
AD-A278 080 NTATION PAGE I_______V._
o av""~ I howr we reownu. mohgthe& It*m %,r ,eiew tw* vinantirm~as SeWOýn eausnd"a scum"e gWwftiI~~li 111111 ~I'l 1111111 oil~ III idamn. Se" womo me.&s r.t.adn ths jde ftn&i e or " dhe meed o1 tnw v filndo.Whee Ie

.Wi WEliI lii~DF1 115 In lll &Vime. Dere~amfe fcr 6efoemnfit Operebon &-W Aepofts. 12115 JUste'o - ev D~ ham No ude." IM, "Vimgan VA

2=22024M2. end to the Office of Intoimaon ow~ "euemory mJIm. Office of iehnq~emeired &,W & uel Wheeigtee. DC 2U

1. AGENCY USE (Leave 12. REPORT REPORT TYPEr AND DATES

4. TITLE AND Bý55

~ VA!' CLO 4b TICk
- ELECTE

v w

L
6. L+, AFPR12 1994

Lj~~8 , .RFORM I- e,

7. PERFORMING ORGANIZATION NAME(S) AND S. PERORGAIATO

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORINGifMONITORING

Ada Joint Program Office AGENCY
The Pentagon, Rm 3E1I1I
Washington, DC 20301-3080

11. SUPPLEMENTARY

1 2a. DISTRIBUTIONIAVAILABILITY 12b. DISTRIBUTION

DMSAOTz'z M A$MN A

13. (Maximum 200

\!A X) o 2 O ~ -.)1~~ ~

14. SUBJECT c% v, 'J-" '>e j r- 15. NUMBER OF

1i7j.SECURITY I18. SECURITY I19. SECURITY 20,. LIMITATION OF
CLASSIFICATION I* CLASSIFICATION
UNCLASSIFIED IUNCLASSIFIED IUNCLASSIFIED UNCLASSIFIED

NiSN Standard Form 296. (Rev. 2-89)
PResolbed by ANSI Sld.

AVF Control Number: AVF-VSR-582.0394
Date VSR Completed: March 14, 1994

94-02-14-TLD

Ada COMPILER
VALIDATICN SUMMARY REPORT:

Certificate Number: 940305W1.11335
TLD Systems, Ltd.

TLD Comanche VAX/i960 Ada Compiler System, Version 4.1.1
VAX Cluster under VMS 5.5 ->

Tronix JIAMG Execution Vehicle (i960MX)
under TLD Real Time Executive, Version 4.1A1

(Final) Accesion For

NTIS CRA&I

DTIC TAB E
Prepared By: Unannounced 0

Ada Validation Facility Justification
645 CCSG/SCSL

Wright-Patterson AFB OH 45433-5707 O.
Distribution I

Availability Codes

AVdil and •or
Dist special

DTIC Q0'ALTY fl •?±(TED3

94-10998
lIBIIIIIIinl1ll1111 lllll111lI 9 4 4 11 1 1 4

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 5 March 1994.

Compiler Name and Version: TLD Comanche VAX/i960 Ada Compiler System,
Version 4.1.1

Host Computer System: DEC Local Area Network VAX Cluster (comprising
2 MicroVAX 3100 Model 90 machines) (VMS 5.5)

Target Computer System: Tronix JIAYGK Execution Vehicle (i960MX)
under TLD Real Time Executive (TLDrtx)
(Domain Configuration), Version 4.1.1

Customer Agreement Number: 94-02-14-TLD

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 940305W1.11335
is awarded to TLD Systems, Ltd. This certificate expires two years after
MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validation Facility
Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

Dire or, ter and Software Engineering Division
Insti'ute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
David R. Basel
Deputy Director
Defense Information Systems Agency,
Center for Information Management

DECLARATION OF CONFORMANCE

Customer: TLD Systems, Ltd.

Ada Validation Facility: 645 C-CSG/SCSL
Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: TLD Comanche VAX/i960 Ada
Compiler System, Version 4.1.1

Host Computer System: Digital Local Area Network VAX Cluster
executing on (2) MicroVAX 3100 Model 90
under VAX/VMS 5.5.

Target Computer System: Tronix JIAWG Execution Vehicle (i960MX)
running TLD Real Time Executive (TLDrtx),
(Domain Configuration), Version 4.1.1

Customer' s Declaration

I, the undersigned, representing TLD Systems, Ltd., declare that TLD
Systems, Ltd. has no knowledge of deliberate deviations from the Ada
Language Standard ANSI/MIL-STD-1815A in the implementation listed in this
declaration executing in the default mode. The certificates shall be
awarded in TLD Systems, Ltd.'s corporate name.

x Date: 10 February 1994

-TLD S~s ei, d.
Terry L. Dunbar, President

VAX/1960/TRONIX PAGE 1

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES....1-2
1.3 ACVC TEST CLASSES.1-2
1.4 DEFINITIWN OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIR0NENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1

" 3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures (Pro92] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to (Pro92].
A detailed description of the ACVC may be found in the current ACVC User's
Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performe. 'this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTR0DUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89) Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the -Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program " guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses conmon storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

INTRODUCTICt4

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/,MIL-STD-1815A-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration (Pro92].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATIM DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54BOZA C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B C83041A 885001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDIBO2B BD1BO6A
ADIBO8A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2Bl5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPEDEDPCIi.S

The following 201 tests hv;e floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 teas) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113H..K (4 tests) have a line length greater than the maximau allowed
line length of 120 for this implementation.

The following 20 tests check for the predefined type INGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LNGJ INTEGER, or
SHORTINTEGER; for this implementation, there is no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is lesis than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLOS is TRUE.

D64005F..G (2) tests use 10 levels of recursive procedure calls nesting;
this level of nesting for procedure calls exceeds the capacity of the
compiler.

2-2

IMPLETATION DEPEDENCIES

B86001Y uses the name of a predefined fixed-point type other than type
DURATICN; for this implementation, there is no such type.

CA.3004E..F (2 tests) check that a program will execute when an optional
body of one of its library packages is made obsolete; this
implementation introduces additional dependences of the package
declaration on its body as allowed by LRM 10.3(8), and thus the library
unit is also made obsolete. (See Section 2.3.)

LA5007S..T (2 tests) check that a program cannot execute if a needed
library procedure is made obsolete by the recompilation of a library
unit named in that procedure's context clause; this implementation
determines that the recompiled unit's specification did not change, and
so it does not make the dependent procedure obsolete. (See Section
2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does not
support decimal 'SMALLs. (See section 2.3.)

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

The following 264 tests check operations on sequential, text, and direct
access files; this implementation does not support external files (See
Section 2.3 regarding CE3413B):

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2lO8A..H (8) CE2109A..C (3)
CE2110A..D (4) CE211IA..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE220SA CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE31OBA..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CF3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C

2-3

IMPLENTATION DEPIENDECIES

CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt to
create a file and expect NAME ERROR to be raised; this implementation
does not support external files and so raises USEERROR. (See section
2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 63 tests.

Note: CD2AB1A is subject to two, distinct modifications as described below
.(the test name is marked with an asterisk).

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22005Z B24009A B25002A B26005A B44004D B59001E
B73004B B83033B BA1020C BA1020F BAiI01C BA2001E
BA3006A BA3013A

C34009D and C340093 were graded passed by Evaluation Modification as directed
by the AVO. These tests check that 'SIZE for a composite type is greater
than or equal to the sum of its components' 'SIZE values; but this issue is
addressed by AI-00825, which has not been considered; there is not an obvious
interpretation. This implementation represents array components whose length
depends on a discriminant with a default value by implicit pointers into the
heap space; thus, the 'SIZE of such a record type might be less than the sum
of its components 'SIZEs, since the size of the heap space that is used by
the varying-length array components is not counted as part of the 'SIZE of
the record type. These tests were graded passed given that the Report.Result
output was "FAILED" and the only Report.Failed output was "INCORRECT
'BASE'SIZE", from line 195 in C34009D and line 193 in C34009J.

C64104A, CB2006A, CB4002A, and CC1311B were graded passed by Processing
Modification as directed by the AVO. These tests make various checks that
CONSTRAINT ERROR is raised for certain operations when the res'tltant values
lie outsi[e of the range of the subtype. However, in many of the particular
checks that these tests make, the exception-raising operation may be avoided
as per LRM 11.6(7) by optimization that removes the operation if its only
possible effect is to raise an exception (e.g., an assignment to a variable
that is not later referenced). In the list below, beside the name of each
affected test is given the line number of the check that is skipped (with a
relevant associated operation's line number noted in parenthesis). These
tests were processed both with and without optimization: the tests reported a
passed result without optimization; with optimization, the checks cited below

2-4

IMPLEMENTTICN DEPENDECIES

were skipped and a corresponding call to REFORT.FAILED was made.

C64104A 174 (copy back of parameter value)
CB2006A 36
CB4002A 85 (initialization @ 54)
CC1311B 55 (default parameter value @ 36)

C98001C was graded passed by Processing Modification as directed by the AVO.
This test checks that a non-static argument to pragma Priority is not
evaluated; it uses the pragma for the main program and within a task unit in
the body of this program. This implementation evaluates the argument when
the pragma appears in a task unit (at line 27) only; this behavior is in
conformity to the draft revised Ada standard (a non-static argument will be
illegal for a main program). (The AVO allows implementers to adopt Ada9X
rules for Ada83 features so as to encourage the transition to the revised
rules.) The test was processed with and without line 27 being commented out,
and it reported "PASSED" and "FAILED" respectively.

CA3004E..F (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program will execute when an
optional body of one of its library packages is made obsolete. This
implementation, for optimization purposes, compiles all compilation units of
a compilation into a single object module with a single set of control
sections, collectively pooled constants, with improved addressing. As a
consequence, the optional package body of these tests and its corresponding
library unit have a mutual dependence, and thus the library unit is also made
obsolete.- This implementation-generated dependence is allowed by LRM
10.3(8).

LA5007S..T (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program cannot execute if a
needed library procedure is made obsolete by the recompilation of a library
unit named in that procedure's context clause. This implementation
determines that the recompiled unit's specification did not change, and so it
does not make the dependent procedure obsolete; the program executes, calling
Report.Failed. The AVO ruled that this behavior is acceptable, in light of
the intent for the revised Ada standard to permit such accommodating
recompilation; further deliberation by the AVO and ARG will determine whether
these (and many related) tests will be withdrawn.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures, Length Check
or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA), which use the
generic procedure Unchecked Conversion. This implementation rejects
instantiations of Unchecked Conversion with array types that have non-static
index ranges. The AVO ruled that since this issue was not addressed by
AI-00590, which addresses required support for UncheckedConversion, and
since AI-00590 is considered not binding under ACVC 1.11, the support
procedures could be modified to remove the use of Unchecked Conversion.
Lines 40..43, 50, and 56..58 in LENCHECK and lines 42, 43, anid 58..63 in
ENUMCHEK were conmented out.

CD1009A CD10091 CD1009M CD1009V CD1009W CDlCO3A
CDlC04D CD2A21A..C CD2A22J CD2A23A..B CD2A24A cD2A31A..C

2-5

IMPLEMENTION DEPENDENCIES

*CD2ASIA CD3014C CD3014F CD3015C CD3015E..F CD3015H
CD3015K CD3022A CD4061A

*CD2A8lA, CD2ABIB, CD2A81E, CD2A83A, CD2A83B, CD2A83C, and CD2A83E were
graded passed by Test Modification as directed by the AVO. These tests check
that operations of an access type are not affected if a 'SIZE clause is given
for the type; but the standard customization of the ACVC allows only a single
size for access types. This implementation uses a larger size for access
types whose designated object is of type STRING. The tests were modified by
incrementing the specified size $ACCSIZE with '+ 64'.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-10 value as 'SMALL for
a fixed-point type. The AVO ruled that, under AM 1.11, support of decimal
'SMALLs may be omitted.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external file.
This is acceptabTe behavior because this implementation does not support
external files (cf. AI-00332).

CE3413B was graded inapplicable by Evaluation Modification as directed by the
AVO. This test includes the expression "COUNT'LAST > 150000", which raises
CONSTRAINT ERROR on the implicit conversion of the integer literal to type
COUNT since COUNT'LAST - 32,767; there is no handler for this exception, so
test execution is terminated. The AVO ruled that this behavior was
acceptable; the AVO ruled that the test be graded inapplicable because it
checks certain file operations and this implementation does not support
external files.

Many of the Class A and Class C (executable) test files were combined into
single procedures ("bundles") by the AVF, according to information supplied
by the customer and guidance from the AVO. This bundling was done in order
to reduce the processing time-compiling, linking, and downloading to the
target. For each test that was bundled, its context clauses for packages
Report and (if present) SYSTEM were commented out, and the modified test was
inserted into the declarative part of a block statement in the bundle. The
general structure of each bundle was:

WITH REPORT, SYSTEM;

PROCEDURE <BUNDLE NAME> IS

- repeated for each test

DECLARE
<TEST FILE> (a modified test is inserted here, ...]

BEGIN
<TEST NAME>; (... and invoked here]

EXCEPTION -test is not expected to reach this exception handler
WHEN OTHERS -> REPORT.FAILED("unhandled exception ");

REPORT. RESULT;
END;

2-6

IMPL1rATIN DEPENDECIES

[... repeated for each test in the bundle]

END <BDLENAM>;

The 1259 tests that were processed in bundles are listed below; each bundle

is delimited by '<' and '>'.

<A21001A A22002A A22006B A26004A A26007A A27003A A27004A
A29002A A29002B A29002C A29002D A29002E A29002F A29002G
A29002H A29002I A29002J A29003A A2A031A> <A32203B A32203C
A32203D A33003A A34017C A35101B A35402A A35502Q A35502R
A35710A A35801A A35801B A35801F A35902C A38106D A38106E
A38199A A39005B A39005C A39005D A39005E A39005F> <A39005G
A54BO1A A54BO2A A55B12A A55B13A A55B14A A62006D A71002A
A71004A A72001A A73001i A73001J A74105B A74106A A74106B
A74106C A74205E A74205F> <A83009A A83009B A83041B A83041C
A83041D A83AO2A A83A02B A83A06A A83A08A A83CO1C A83CO1D
A83CO1E A83CO1F A83CO1G A83CO1H A83CO1I A83COlJ A85007D
A85013B A87B59A> <AB7006A AC1015B AC3106A AC3206A AC3207A>

<AD1AO1A ADIA01B AD1DO1E AD7001B AD7005A AD7101A AD7101C
-AD7102A AD7103A AD7T03C> <AD7104A AD7203B AD7205B> <C23001A
C23003A C23006A C24002A C24002B C24002C C24003A C24003B
C24003C C24106A C24113A C24113B C24113C C24113D C24113E>

<C24201A C24202A C24202B C24202C C24203A C24203B C24207A-
C24211A C25001A C25001B C25003A C25004A C26002B C26006A>

<C26008A C27001A C2AOOlA C2AMO1B C2AO01C C2A002A C2AO06A
C2AMO8A C2AO09A C2A021B> <C32107A C32107C C32108A C32108B
C32111A C32111B> <C32114A C32115A C32115B> <C32117A C34001A
C34001C C34001D C34001F C34002A C34002C C34003A C34003C>

<C34004A C34004C C34005A C34005C> <C34005D C34005F C34005G
C340051> <C34005J C34005L C34005M C340050> <C34005P C34005R
C34005S C34005U C34006A C34006F C34006G C34006J> <C34006L
C34007A C34007D C34007F C34007G> <C340071 C34007J C34007M
C34007P> <C34007R C34007S> <C34009A C34009F C34009G C34009L
C34011B C34012A C34014A C34014C> <C34014E C34014G C34014H
C34014J C34014L C34014N C34014P C34014R C34014T> <C34014U
C34014W C34014Y C34015B C34016B C34018A C35003A C35003B
C35003D C35003F C35102A C35106A C35404A> <C35503A C35503B
C35503C C35503D C35503E C35503F C35503G C35503H C35503K>

<C35503L C355030 C35503P C35504A C35504B C35505A C35505B
C35505C> <C35505D C35505E C35505F C35507A C35507B> <C35507C

C35507E C35507G C35507H C35507I C35507J> <C35507K C35507L>

<C35706A C35706B C35706C C35706D C35706E> <C35707A C35707B
C35707C C35707D C35707E C35708A C35708B C35708C C35708D

C35708E> <C35711A C35711B C35712A C35712B C35712C C35713A
C35713C> <C35801D C35802A C35802B C35802C C35802D C35802E>

<C35902A C35902B C35902D C35904A C35904B C35A0MA C35AO3A
C35AO3B C35A03C C35AO3D> <C35A03N C35A030 C35A03P> <C35AO3Q
C35A04A C35A04B C35A04C> <C35A04D C35AO4N> <C35A040 C35AO4P>

<C35A04Q C35AO5A C3SA05D C3SAO5N> <C35AO5Q C35A06A C35A06B>
<C35A06D C3MAN6N C35A060> <C35A06P C35AO6Q C35A06R C35AO6S
C35A07A C35AO7B C35A07C> <C35AO7D C35AO7N C35A070 C35AO7P

C35AO7Q C35A08B C36003A> <C36004A C36104A C36104B C36105B

2-7

IHPLEDtATIM DEPENDECIES

C36172A C36172B C36172C> <C36174A C36180A C36202A C36202B
C36202C C36203A C36204A C36204B C36204C> <C36205A C36205B
C36205C C36205D C36205E C36205F C36205G C36205H> <C362051
C362053 C36205K C36301A C36301B C36302A C36303A C36304A
C36305A> <C37002A C37003A C37003B C37005A C37006A C37007A
C37008A C37008B> <C37008C C37009A C37010A C37010B C37012A
C37102B C37103A C37105A C37107A C37108B C37206A C37207A
C37208A C37208B C37209A C37209B C37210A> <C37211A C37211B
C37211C C37211D C37211E C37213A C37213B C37213C C37213D>

<C37213E C37213F C37213G C37213H> <C37213J C37213K C37213L
C37214A> <C37215A C37215B> <C37215C C37215D C37215E C37215F
C37215G C37215H C37216A C37217A C37217B C37217C> <C37304A
C37305A C37306A C37307A C37309A C37310A C37312A C37402A
C37403A> <C37404A C37404B C37405A C37409A C37411A C38002A
C38002B C38004A C38004B C38005A C38005B C38005C C38006A
C38102A C38102B C38102C C38102D C38102E C38104A C38107A
C38107B> <C38108A C38201A C38202A C39006A C39006B C39006D

-C39006E C39006G C39007A C39007B C39008A C39008B C39008C>
<C41101D C41103A C41103B C41104A C41105A C41106A C41107A
C4118OA C41201D C41203A C41203B> <C41204A C41205A C41206A
C41207A C41301A C41303A C41303B C41303C C41303E C41303F
C41303G C41303I C41303J C41303K C41303M C41303N C413030
C41303Q C41303R C41303S C41303U C41303V C41303W C41304A>

<C41304B C41306A C41306B C41306C C41307A C41307C C41307D
C41308A C41308C C41308D C41309A> <C41320A C41321A C41322A
C41323A C41324A C41325A C41326A C41327A C41328A> <C41401A
C41402A C41403A C41404A C42005A C42006A C42007A C42007B>

<C42007C C42007D C42007E C42007F C42007G C42007H C42007I>
<C42007J C42007K C43003A C43004B C43103A C43103B C43104A>
<C43105A C43105B C43106A C43107A C43108A C43204A C43204C
C43204E C43204F> <C43204G C43204H C432041 C43205A C43205B
C43205C C43205D C43205E C43205F C43205G C43205H C43205I
C43205J C43205K C43206A C43207A C43207B C43207C> <C43207D
C43208A C43208B C43209A C43210A C43211A C43212A C43212C
C43213A> <C43214A C43214B C43214C C43214D C43214E C43214F
C43215A C43215B C43222A> <C43224A C44003A C44003D C44003E
C44003F C44003G C45101A C45101B C45101C C45101E C45101G
C45101H C45101I C45101K C45104A C45111A C45111B C45111C>

<C45111D C45111E C45112A C45112B C45113A> <C45114B C45122A
C45122B C45122C C45122D C45123A C45123B C45123C> <C45201A
C45201B C45202A C45202B C45210A C45211A C45220A C45220B
C45220C C45220D C45220E C45220F C45231A> <C45232A C45232B
C45241A C45241B C45241C C45241D C45241E> <C45242A C45242B
C45251A C45252A C45252B C45253A C45262A> <C45272A C45273A
C45274A C45274B C45274C C45281A C45282A C45282B C45291A
C45303A C45304A> <C45321A C45321B C45321C C45321D C45321E>

<C45323A C45331A C45331D C45332A C45342A C45343A C45344A
C45345A C45345B C45345C C45345D> <C45347A C45347B C45347C
C45347D C45411A C45411D C45412A> <C45413A C45421A C45421B
C45421C C45421D C45421E> <C45423A C45431A C45502A C45503A>

<C45504A C45504D> <C45505A C45521A C45521B C45521C C45521D
C45521E> <C45523A C45524A C45524B C45524C C45524D C45524E>

<C45532A C45532B C45532C C45532D C45532E C45532F C45532G
C45532H C455321 C45532J C45532K C45532L> <C45534A C45611A

2-8

ImpLD41RTTICN DEPENDENCIES

C45613A C45614A C45621A C45621B C45621C C45621D C45621E>
<C45622A C45624A C45624B C45631A C45632A C45641A C45641B
C45641C C45641D C45641E> C45652A C45662A C456620 C45672A
C46011A C46012A C46012B C46012C> <C46012D C46012E> <C46013A
C46014A C46021A C46023A C46024A C46031A C46032A C46033A>

<C46041A C46042A C46043A C46043B> <C46044A C46044B C46051A
C46051B C46051C> <C46052A C46053A C46054A C47002A C47002B
C47002C C47002D C47003A C47004A C47005A C47006A C47007A>

<C47008A C47009A C47009B C48004A C48004B C48004C C48004D
C48004E C48004F C48005A C48005B C48005C C48006A C48006B>

<C48007A C48007B C48007C C48008A C480088 C48008C C48008D
C48009A C48009B C48009C C48009D C48009E C48009F C48009G>

<C48009H C48009I C48009J C48010A C48011A C48012A C49020A
C49021A C49022A C49022B C49022C C49023A C49024A C49025A
C49026A> <C4AO05A C4AO05B C4AO06A C4AO07A C4AO10A C4AO10B
C4AO10D C4AO11A C4AO12A C4AO12B C4AO13A C4A013B C4AO14A>

<C51002A C51004A C52001A C52001B C52001C C52005A C52005B
C52005C C52005D C52005E C52005F> <C52007A C52008A C52008B
C52009A C52009B C52010A C52011A C52011B C52012A C52012B
C52013A> <C52103B C52103C C52103F C52103G C52103H C52103K
C52103L> <C52103M C52103P C52103Q C52103R C52103S C52103X
C52104A C52104B C52104C C52104F> <C52104G C52104H C52104K
C52104L C52104M C52104P C52104Q C52104R C52104X C52104Y>

<C53004B C53005A C53005B C53006A C53006B C53007A C53008A
C54AO3A C54A04A C54A06A C54A07A C54A1IA C54AI3A C54AI3B
C54A13C> <C54AI3D C54A22A C54A23A C54A24A C54A24B C54A26A
C54A27A C54A41A C54A42A C54A42B C54A42C C54A42D C54A42E
C54A42F C54A42G C55BO3A C55BO4A C55BO5A C55B06A C55B06B>

<C55BO8A C55B09A C55B10A C55B1IA C55B11B C55B15A C55B16A
C55CO1A C55C02A C55C02B C55C03A C55C03B C55DO1A C56002A
C57002A C57003A C57004A C57004B C57004C C57005A> <C58004A
C58004B C58004C C58004D C58004F C58004G C58005A C58005B
C58005H C58006A C58006B C59001B C59002A C59002B C59002C>

<C61008A C61009A C61010A C62002A C62003A C62003B C62004A
C62006A C62009A C63004A C64002B> <C64004G C64005A C64005B
C64005C C64103A C64103B C64103C C64103D C64103E C64103F>

<C64104A C64104B C64104C C64104D C64104E C64104F C64104G
C64104H C641041 C641043 C64104K C64104L C64104M C64104N
C641040 C64105A C64105B C64105C C64105D C64105E C64105F>

<C64106A C64106B C64106C C64106D C64107A C64108A C64109A
C64109B C64109C C64109D C64109E> <C64109F C64109G C64109H
C64109I C64109J C64109K C64109L> <C64201B C64201C C64202A
C65003A> <C65003B C65004A C66002A C66002C C66002D C66002E
C66002F C66002G C67002A C67002B C67002C C67002D C67002E>

<C67003A C67003B C67003C C67003D C67003E C67005A C67005B
C67005C C67005D> <C72001B C72002A C73002A C73007A C74004A
C74203A C74206A C74207B C74208A C74208B C74209A C74210A
C74211A C74211B C74302A C74302B C74305A C74305B C74306A
C74307A> <C74401D C74401E C74401K C744010 C74402A C74402B
C74406A C74407B C74409B> <C83007A C83012D C83022A C83023A
C83024A C83025A> <C83027A C83027C C83028A C83029A C83030A>

<C83031A C83031C C83031E C83032A C83033A C83051A C83B02A
C83B02B C83E02A C83E02B C83E03A C83E04A C83FO1A C83F03A
C84002A C84005A C84008A C84009A C85004B C85005A C85005B

2-9

IMPLEMENTATIM DEPENDENCIES

C85005C C85005D> <C85005E C85005F C85005G C85006A> <C85006F
C85006G> <C87AO5A C87A05B C87B02A C87B02B C87B03A C87B04A
C87B04B C87B04C C87B05A C87B06A C87BO7A C87B07B> <C87B07C
C87BO7D C87B07E C87B08A C87B09A C87B09B C87B09C C87B1OA
C87BllA C87BIIB C87B13A C87Bl4A C87B14B C87B14C C87B14D>

<C87B15A C87B16A C87B17A C87BI8A C87BI8B C87BI9A C87B23A
C87B24A> <C87B24B C87B26B C87B27A C87B28A C87B29A C87B30A
C87B31A C87B32A> <CBl001A CB1002A CB1003A CB1004A CB1005A
CB1010A CB1010B CB1010C CB1010D> <CB2004A CB2005A CB2006A
CB2007A CB3003A CB3003B> <CB3004A CB4001A CB4002A CB4003A
CB4004A CB4005A CB4006A CB4007A CB4008A CB4009A CB4013A
CB5002A CB7003A CB7005A> <CC1004A CC1005C CC1010A> <CC1010B
CC1018A CC1104C CC1107B CC111A CC1204A CC1207B CC1220A
CC1221A CC1221B CC1221C CC1221D> <CC1222A CC1224A CC1225A>

<CC1304A CC1304B CC1305B CC1307A CC1307B CC1308A CC1310A>
<CC1311A CC1311B CC2002A CC3004A CC3007A CC3011A CC3011D

CC3012A CC3015A CC3106B> <CC3120A CC3120B CC3121A CC3123A
CC3123B CC3125A CC3125B CC3125C CC3125D> <CC3126A CC3127A
CC3128A CC3203A CC3207B CC3208A CC3208B> <CC3208C CC3220A
CC3221A CC3222A CC3223A CC3224A CC3225A> <CC3230A CC3231A
CC3232A CC3233A CC3234A CC3235A CC3236A CC3240A CC3305A
CC3305B CC3305C CC3305D CC3406A CC3406B CC3406C CC3406D
CC3407A CC3407B CC3407C CC3407D CC3407E CC3407F> <CC3408A
CC3408B CC3408C CC3408D CC3504A CC3504B CC3504C CC3504D
CC3504E CC3504F> <CC3504G CC3504H CC3504I CC35043 CC3504K>

<CC3601A CC3601C> <CC3603A CC3606A CC3606B CC3607B>

2-10

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Robert R. Risinger
TLD Systems Ltd.
3625 Del Amo Boulevard
Torrance California 90503
(310) 542-5433

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programuing Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system - if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

PROCESSING INFOMATION

a) Total Number of Applicable Tests 3534
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 67
d) Non-Processed I/0 Tests 264
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 532 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTIN

A. magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the Serial Ports, and run. The results were captured on the host
computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The following options were used for testing this
implementation:

Compiler
Option / Switch Effect

NoPhase Suppress displaying of phase times during
compilation.

NoLog To cause command line to be echoed on log
file.

NoDebug To suppress generation of debug symbols to
speed compilation and linking.

List To cause listing file to be generated.

Target-i960 Selects the TLD Intel i960 target
architecture.

3-2

PROCESSING INFORMATION

Linker
Option / Switch Effect

NoDebug Suppresses generation of Debugger symbol
files.

NoVersion Suppresses announcement banners that
contain timestamp and version information
to facilitate file comparing.

All tests were executed with Code Straightening, Global
Optimizations, and automatic Inlining options enabled. Where
optimizations are detected by the optimizer that represent deletion
of test code resulting from unreachable paths, deleteable
assignments, or relational tautologies or contradictions, such
optimizations are reflected by informational or warning diagnostics
in the compilation listings.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX INLEN 120 - Value of V

$BIG IDl (l..V1-> 'A', V -> '1')

$BIG ID2 (1..V-I -> 'A', V -> '2')

$BIG ID3 (l..V/2-> 'A'W) & '3' &
(l..V-l-v/2 -> 'A')

$BIG ID4 (I..V/2 -> 'A') & '4' &
(l..v-1-v/2 -> 'A')

$BIG.INT_LIT (1..V-3-> '0') & "298"

$BIG REALLIT (1..V-5-> '0') & "690.0"

$BIG STRING1 '"' & (l..V/2 -> 'A') & '"'

$BIG STRING2 '"' & (1..V-l-V/2 -> 'A') & 'I' & I"'

$BLANKS (1..V-20 -> '

SMAX LEN INT BASED LITERAL
"112:" & (1..V-5-> '0') & "11:"

$MALENREAL _BASEDLITERAL
"16:" & (I..V-7 -> '0') & "F.E:"

A-1

MACRO PARAMETERS

SMAX STRING LITERAL "" & (l..V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC SIZE 32

$ALIGNMENT 4

$COUNT LAST 511

$DEFAULT MEM SIZE 16#40000000#

SDEFAULT STOR UNIT 8

$DEFAULT SYS NAME 1960

$DELTA DOC 2.0**(-31)

SENTRY ADDRESS 15

SENTRY ADDRESS1 17

SENTRY ADDRESS2 19

$FIELD LAST 127

$FILE TERMINATOR ASCII.FS

$FIXED NAME NOSUCHFIXEDTYPE

SFLOAT NAME NO SUCH FLOAT TYPE

$ FORMSTRING

$FORM STRING2 CANNOT RESTRICT FILE CAPACITY

$GREATERTHANDURATION
.90000.0

$GREATER THAN DURATION BASE LAST
T3107-. 0

$GREATER THAN FLOAT BASE LAST
3.4I000E+38

$GREATER THAN FLOAT SAFE LARGE
2.13000E+37

A-2

MACO PARAMETERS

_ NOSUCHSIWFLOAT TYPE

$HIGHPRIORITY 20

$ILLEGA.LETEREWAL FILE NAMEl
"-WMADCHAR@.

$ILLEGL ~E)M3AL FILE NWME2WTHI SFI LEWEOUL•DOEPERFECTLYL" &
"IFI-HER•2SOL . SOTHERE"

$INAPPROPRIATE_LINELNGTH
-1

$INAPPROPRIATEPAGE LENGTH

$INCLUDEPRAGcA1 PRAGMA InCLUDE ("A28006D1. TST")

$INCLUDE RAG4A2 PRAGMA INCLUDE ("B28006F1 .TST")

$INTEGER FIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPLUS1 2147483648

$IaERFACE _LANGGE ASSEMBLY

SLESS THANDURATIO -90000.0

SLESS THAN DURATION BASE FIRST
-111073 .0

SLINE AT ACSI.CR

$LcwPRIORITY 1

$MACHINE CODE STATMENT
CTRL'(B, 1, True)

SMACHINECODE TYPE CTRL

$MANTI SSA DOC 31

$MAX DIGITS 15

SMAX INT 2147483647

SMAXINTPLUS_1 2147483648

$MIN.INT -2147483648

A-3

MACRO PARAMETERS

SNAME NO_ SUCHINTEGER_TYPE

$NAMELIST Pmachine, nsl6000, vax, af1750 z8002, z8001,
gould, pdpll, m68000, pe3200, caps, amidahl,
i8086, i80286, i80386, z8000 0 , ns32000,
ibmsl, m68020, nebula, namex, hp, bbl,
hawk, r1666, i960

$NAMESPECIFICATIONI Not supported

SNAME_SPECIFICATION2 Not supported

$NAMESPECIFICATION3 Not supported

$NEGBASEDINT 16#FFFFFFFE#

SNEW MEMSIZE 16#10000000#

$NEWSTORUNIT 8

$NEW SYSNAME i960

$PAGETERMINATOR ACSII.CR & ASCII.FF

SRECORD DEFINITION Withdrawn

$RECORDNAME withdrawn

$TASKSIZE 32

$TASKSTORAGE_SIZE 2000

STICK 0.000001

$VARIABLEADDRESS SYSTEM."-"(16#7FFFFFF4#)

SVARIABLE ADDRESS1 SYSTEM. "-" (16#7FFFFFEC#)

$VARIABLEADDRESS2 SYSTEM. "-" (16#7FFFFFE8#)

SYOURPRAGMA Withdrawn

A-4

APPENDIX B

COMPILATIOCN SYSTEM OPTICNS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-1

TLD ADA COMPILER i960-ADA-2C
COMPILER USAGE 3 - 8

3.4 COMPILER OPTION SWITCHES

Compiler option switches provide control over various processing and
output features of the compilur. These features include several
varieties of listing output, the level and kins of optimizations
desired, the choice of target computer, and the operation of the
compiler in a syntax checking mode only.

Keywords are used for selecting various conpiler options. The
cmplement keyword, if it exists, is used to disable a compiler option
and is fozmed by prefixing the switch keyword with 3OO.

Switch names may be t-uncated to the least number: of characters
required to uniquely identify the switch. For example, the switch
"CROSSR.EF (explained in the list below) may be uniquely identified by
the abbreviation OCR* or any longer abbreviation. in the list of
switches on the following pages, .the abbreviations are in bold and the
optional1 extra characters are not bolded.

If an option is not specified by the user, a default setting in
assumed. All specified compiler options apply to a single invocation
of the compiler.

The default setting of a switch and its meaning are defined in the
table below. The meaning of the complement form of a switch is
normally the negation of the switch. For scme switches, the cmplement
meaning is not obvious; those cclement switch keywords are listed
separately.

In the description of the switches, the target dependent name target is
used. The value of this symbol is determined by the value of the
TARGET switch.

Compiler-generated tile specifications generally conform to host
conventions. Thus, any generated filename is the source filename
appended with the default file type. The output file name can be
completely or partially specified.

TLD ADA COMPILER z960-ADA-2C

COMPILER USAGE 3 - 9

SWITCH NAME MEANING

ADDRESS SPACrX-MSei (nme, subsystem mmne)
NOADDRz sis i - default

This switch allows users to specify the association of a
.c.pilation unit with a logical address space. This capability
will support the definition of i960 Extended Architecture "Domains
and domain calls.

The name parameter is the name of the address space and
subsystim-mime is the name of the subsystem to which the address
space belongs. If subsystem-zme is not supplied, then the addeas
space does not belong to a subsystem. This switch may appear in
any compilation, and applies to all the compilation units in the
cazpilation.

1TE: An alternate method of associating cc.pilation unit(s) with
a logical address space is to use the pragma AddressSpace in the
compilation unit(s) and cnile without using this switch. The
pragma Address_Spacelntry is used to indicate which subprograms
represent entities into the logical space (defined by this switch
or pragua Address-Space). Refer Section S.2.F of this document
under ZIplementation-Dependent Pragmas, for further infozuation.

This capability does not yet allow users to indicate objects that
are to be implemented and referenced as independent objects.

TLDlnk will verify that all compilation units in the link have an
address space attribute of the same value, or have no address space
attribute and will create either a domain (if an address attribute
is specified) or a program (if no address space attribute is
specified).

AID.adb- filename
NOAI -- default

T his switch causes information collected during compilation to be
saved in a specified data base file or a default file named
1960-.AD• in the cpilation directory. This infozmation includes
the compilation units, the contained scopes, the local declarations
of objects and types and their descriptions, external references,
callers, calls, program design language (PDL) which is extracted
from stylized Ada comments embedded in the source code, and any
other infozration extracted from similar stylized Ada comments.
The TIM Ata Info Display (TLDaid) permits the user to browse this
data base and to extract selected data base infozration to support
the understanding of a program or to produce documentation
describing the program.

TLD ADA COMPILER x960-ADA-2C
CoNMP:LEf USAGE 3 - 10

CALL nm
N0Ci•zT . -def saut

.his switch is used in comjunction with ELAOOR= and LIST to
cause all .CXZT files (corresponding to the caplete set of object
files being linked for this program) to be read in and a closure of
all calls in the program to be cmzputed. The results of this
analysis is foxratted into a subprogram call tree report and output
in the listing file. This switch has no effect without the
L•3OROR and LIST switches.

NOTE: The call tree is in c leoe if any required €pilation

unit's .CTI files are missing.

CHzcxs -- defaultCHsats(. (check•:m,•.{...)
NOCH•zcxs{. (cb4;ecider,.ifier(,))

When the CHCK switch is used, zero or more check Ident•flers are
specif ied and the run time checks are enabled. The status of run
time checks associated with un•entimned checAkIdentifers is
unchanged.

Without any check-identifier, the 0NCO S switch omits all run
time checks. If cme or more check ldentifiera are specified, the
specified run time checks are onitted. The status of ru time
checks associated with uimenticoned check identifierz is unchanged.

Checks can be eliminated selectively or cpletely by source
statement pragma Suppress. Pragma Suppress overrides the CHECKS
switch.

Check identifiers are listed below and are described in the LX,

Section 5.2.B.

AI_ CH S -- default (consists of all the checks below)

ACCESSOaJaC Discncm'aCH DCKzIUIONCHECK
ELABORATION-CECK • _CuHEC TMrITNCE

OVICRFLOWO C2 RAIG;CE~CK STO CHECK~

TLD ADA COMPILER i960-ADA-2C
CoMPILER USAGE 3 - 11

COMI-TcbaCracter-specifiaaaion{ ...)

This switch allows the user to override a met of defaul. meta
characters used to mark comments which have special Meanings to the
Comiler. (In the source code, theoe =eta characters must
iz~mdiately follow the Ada c ten designar.= I--.-) Ther are 133
me=ta characters defined as positional entries in the string of
characters specified for thin switch. To define oe or mor
entries. all entries up to and including the last entry to be
defined m=st be specified:. Each of theme characters may be
zrpresented either by the character itself, or by a dollar sign 0$5
followed by the character's decimal ascii value. (Te latter fton
is useful for specifying characters which would otherwise be
significant to the comand line parser.) To specify a dollar sign
character, use the fto= "$36. Rmaining character positions are*
left unchanged. Capabilities for character positions in the string
may be disabled by specifying either blank ('$320) or null (0$00).
Please rfefr to the ascii character set table in Appendix B for the
decimal value of ascii characters. The definition of each entry
and its current default value is as follows:

TI~ada Coniditional Ceilatiori CimecaetrI

2miLiM Descrptio

I Configuration Equals (default: gum)
This entry defines the character used to mark
conditional source lines which will be included in
the cnilation only if its
configuration-Idaentifer is specified with the
CONFIGURATION switch.I

2 Configuration Not Equal (default: 0#u)
This entry defines the character used to mark
cond-,.donal source lines which will be included in
the 1m.pilation only if its
conf•:lr•'ion-identciflr is Z= specified with the
CONFIGORATZIO switch. This same character is used
to begin an "else, clause within a gr0 of
conditional compilation lines. The lines between
this character and the end of the group will be
included in the capilation only if the
configuracion-Identifler for the group is am
specified with the COHNGURZXION switch.

3 Begin Configuration (default: a {)
This entry defines the character used to mark the
begi==ing of a g-oup of cond=tional compilation
source lines.

71 ,'W ' T

TLD ADA COMPILER x960-ADA-2C
COMPILER USAGE 3 - 12

4 Rod Configuration (default: 9}')
This entry defines th character used to mark the
end of a group of conditional ecepilation source
lines.

See the CO=T1ZGORRX comand line option for more if0o•rAatn on
conditional comil~ation.

Beu-e. Refo rmattinga emmnt C sters

5 Continuation Line (default: 9&9)
This entry defines the character used to mrk a&
comment continued from the previous line and for .
which word-r.pping is performed during source code
reformatting.

6 Reserved for future use.
"7 Reserved for future use.

a begin Topic (default:] C')
"This entry defines the character used to mark theo
beginning of text associated with a topic name.

9 End Topic (default: '1')I
This entry defines the character used to mark the
end of text associated with a topic name.

10 Define Topic (default: 0'0)
This entry defines the character used to mark the
definition of a cmment meta -character for a
particular user-defined topic name. This character-I
may subsequently be used as a shorthand for the
above method, eliminating the need to specify the
topic name at each occurrence.I

3.1. Description (default: 0:")
his entry defines the character used to mark a

cent as a description associated with the
previous declaration.

"arf • WW&'3m4 L2'

TLD ADA COMPILER i960-ADA-2C
COMPILZR USAGE 3 - 13

12 POL (default: •J)
This entry def ines the character used to mark a

cinnt as Progria Design Language (PDL).

13 Command (default: S$w)
This entzy defines the character used to xmark a
commnt as & comand to control data collection.
This entry provides a mechanism fco users to
maintain compatibility between the new
izplaaantatibn and previously commented source. it

also may be used to p•rzode a degree of€
compatibility with tools similar to TLDaid.

See the Refe-ee Docment for the TLD tilitiem for mo
information on TLDaid.

CONFzxw ox-{ ()configuvati-• ,'identifier(,.. .) .

where the parenthesis () are required only when more than ome
configuration-identifier is specified.

This switch provides a conditional cmpilation (configuration)
capa ility by determining the specially commented source lines that
are to be included in the compilation. Source lines(s) can be
associated with a configuration-identifier which if supplied with
this switch, causes them to be included. Also, alternative source
line (C) can be specially marked to be included if the
configuzation -idetifier is not supplied.

Vark Source Line (s) Individually:

--configuration -identifier conditional-source--line

or:I

- - *configurarion -identifier condl ional -source -line

The above fozat is repeated for each source line to be marked as a
c=n•itional source line.

Source line (s) beginning with *--us are included in the compilation
if the configuration-identifier is specified with the comand line
COMIGURATION switch. Source line(s) beginning with 0-4-8 are
included in the cmilation if the configuration-identifier is n I
specified with the cmand line CONFIGURATICK switch (COFIGURATIOI
is not used or is used without that configuration-identifier).

= ?LD OW7VO LTD

TLD ADA COMPILER i960-ADA-2C
COMPILER USAGE 3 - 14

Nazck a Group of Source Lines:

- -{ confi~guratio- i denc.ifier

condi zional -source-li~ne-i I
) Cmiled if

c}nfiguration-Identiflaez
~j specified with this

condir.iozw -source-l1no-a switch.I

a2.-com•c.ional -aource.@}ine. I:
)Comiled ift
configura-ion--deneifler
i is nE specified with this

alt -ccndl cional -souive-lice-n)switch.I
-- } canfiguracio,-Ide.cif.er

Source line(s) between lines beginning with • --(, and "-4-6 are
included in the c pilation if the configuration-Identifier isI
specified with the cczmand line CM7FZGURAZON switch. Source -
line(s) between lines beginnin with 1--#, and 0--)* are included
in the compilation if the configur•arin-idenr.fer is n= specified
with the commiand line CMNFXGOR.A.ON switch (CMWXZGUA=0'I is not
used or is used without that configuratian-Idencifier).I

Notes om Syntax

Cements are examined for configuration switches only it they
occupy a line by thhemselves (i.e., the "--n starts at the firstI
non-blank character of the line.

The specia ceim t characters "--=n, -- #, '--{', and "-}.) muast
be entered as shown with no spaces between them.

The characters U., ,{, and -}* are the default mieta
characters for configuration switches, but they can be modified.
See the CO command line option for more infaomution.

The configurat•io-Iden'•i•er must immediately follow the special
comment characters; no space is allowed between them.

The configuration-identifier on the closing brace 1- -)} isI
optional, but if specified must match the identifier on the
corresponding opening brace * - { ,.

7TLC MWA. UD

TLD ADA COMPILER z960-ADA-2C
COMPILER USAGE 3 - 15

The '--*- has one or the other of two distinct meanings: 1) ift
followed by a cofiguration-iddnrifler, it means acile the
balance of this line conditionally' and 2) if no identifier
follows, it means "toggle the seMse of the innermost Configuration
brace8.

My additional taxt on the same line as the
- - configurz .ion-idencifier- and/or the --) I

co.figura.ion-identifler. will be considered a cmment and will 2= I

be compiled as Ada source, regardless of the configuration
settings.

Namina Constraint

By default, a /CDNY G=1960 setting is created for the target
computer and model (by the /TARGM T and the /HEL Compiler
switches). Therefore, Z360 is not a valid configuration-idencu$ier
for condlitional compilation. If used, conditional source with that
name will always be included in the c ilation whether or not this
switch is specified (since that name is already specified for the
target and model, by default).

The c;:iler treats nested conditional source in a manner similar
to nested "if" statements. it checks the configuracion-identifer
to determine if it has been specified with the CM0IIUFZOR 0O switch
(similar to the checking perfozmed to determine vhether an 'if,
statement is to be performed). If so, it selects the source marked
with that configuration-identifier (just as an 'if, statement is
performed for a "True, 'if' condition). if not and alternate
conditional source exists, it selects the alternate source for that
configuration-identifier marked with 0--0 (just as an "else,
statement is performed for a 'False, ':If' condition). it continues
this checking for evezy nested configuration-identifler it
encounters.

7n- TWJN 719^40 LTD

TLD ADA COMPILER x960-ADA-2C
COMPILER USAGE 3 - 16

Fcr emple:

conudita1 -sorce-1i•ne-AM }
SCompiled if A jA
) specified with

thin switch.
cadcidic tnal- scurce-li ne-An
__# I
atc-conAtioual -sou.e--. ne-Al }

SCompiled if A is na
Sspecified with

} this switch.
a.c-conditio.al -asre-.l•ne-A-a }

conditional -source- 21ne-51 }
}Copiled if A isngI
a an•d 3 specified

} with this switch.
conc clonal -source- ine-Bn }

Compiled if A and B are
2 =•, specified with

. this Switch.
alt-cond•t•onal -source-1ine-En }-- {C

condi tional -souz'ce-.le- C2 }
}Compiled if A and -are

= n• and C J& specified
)with this switch.

conditional -soure-line-C I'

alt -. •c 4 tional -source-Xine-C }
} Compiled if A, 3, and C
} are 2 specified with
} this switch.

alt -cosnditonai - aouzce-.1ae-z) }
-- }cI

-- }3

C- figuration switches are examined and uust be properly nested
regardless of whatbe. or not the configuration-identifies are
specified.I

7f'-, ThD S mw L70

TLD ADA COMPILER z960-ADA-2C
COMPLUR USAG 3 - 17

The following example format is invalid, sin"ce "3 is not
completely nested within "An:

At the close of OAR, the nested '3' will be forced closed with the
werning message: *missing configuration coment: - -)B". by the
time 8- -)B is reached, Ono will have already been closed, so the
following warning will be issued: Ouciatched configuration
Coment: --)3'.

CRossuzy
NOCRoss- -- default

This switch generates a cross reference listing that contains •ames
referenced in the source coda. The cross reference listing is
included in the listing file; therefore, the LIST switch must be

selected or CROSSNEF has no effect.
CT,
NOCM default

This switch generates a CASE tools interface file. The default
filename is derived from the object filename, with a Ct
eztensioi. The CT1 file is required to support the CLR3
7OLLCALL.,TXZZ, and 3NVYm'EDCALLTREE switches.

DE~uo - - default
NODEBUG

This switch selects the production of symbolic debug tables in the

relocatable object file.

Alternate Areviation: DBG, NODB,

DIAMOSTICS
NODIA;szrzs -- default

This switch produces a diagnostic message file compatible with
Digital's Language Sensitive Editor and XinoTech Editor. See
Digital'*s documentation for the Language Sensitive Editor for a
detailed ewplanation of the file produced by this switch.

"71.w ?LD W6 LT-D

TLD ADA COI4PILEP i960-ADA-2C
COMPILER USAGE 3 - 18

NOEMAwwm -- default

This switch generates a setup program (in mit -am"SELAB,.033 (and a
listing file in unIc-nam&S5LAA.LZS if the LIST switch ws
specified)) that elaborates all c £ilation units on which the
specified libra•y unit procedure (main program) depends and then
calls the procedure (main program). When the KLA50UMTOR switch is
used, The unit name of a prevIously cmiled procedure must be
specified instead of & source file. it is not necessary to
distinguish a main program from a library unit when it is ciled.

NOFzC~z_6L,_Tw - - default

When the FULL C _LL-TRh switch is used, the cmpiler listing
includes all calls including all nested calls in every call. The
NOVM LCAL •TREE switch shows all nested calls in the first
instance only and all subsequent calls are referred to the first
instance. This switch has no effect without the ELABORATOR and
LIST switches.

INDEmm'2zi.n
INDElqrxzzcu3 -- default

This switch controls the indentation width in a reformatted source
listing (see the UZFORW switch description). This switch assigns
a value to the number of colimns used in indentation; the value n
can range from 1 to 8.

INFo - - default
NOINFo

The INO switch produces all diagnostic messages including
inforation- level diagnostic messages. The NOINFO switch
suppresses the production of infomtion-level diagnostic messages
only.-

INS=uzxA=-Ipti=
NOINSmxn== default

This switch is used to establish a default mode of instantiation
for all generic instantiations within the Compilation.

The option parameter instructs the Compiler to instantiate generics
in the manner specified, as described below:

single body - a single body is used for all instantiations

macro - each instantiation produces a different body

7fjUN Aft= MIN L=D

TLD ADA COMPILER z960-ADA-2C
COMPILER USAGE 3 - 19

Please refer to Section 3.12 "Generics" for or information on the i
advantages and disadvantages in using singlebody generxcs versus i
nacro generics.

oested instantiations and nested generics are supported and
generics defined in library un.ts are permitted.

it is not possible to perform a macro instantiation for a generic
whose body has not yet been caqpiled.

NOTE: An alternate method of controlling macro instantiation of
a generic is by using pragma Instantiate in the source cod aend
perf oZming ompilation without this sw•tch. The praga controls
instantiation of a particular generic. Refer to Section 5.2.F of
this document imder Zsplementation-Dependent Pragmas, for further
information.I

In the event of a conflict between the pragma and this switch,
the switch takes prftcedence.

INTS•L
NOINTsL -- default

This switch intersperses lines of source code with the assembly
code generated in the macro listing. This switch is valid only if
the LIST and M MR switches are selected. It may be helpful in
correlating Ada source to generated code, but it increases the size
of the listing file.

INV& zC= Tc
NOINVtmDcZLL'Tmm -- default

This switch determines which calls led to the present nme. A
reversed order call tree is generated. This switch has no effect
without the SLABORATOR and LIST switftes.

LIST -•Is.ting-file-spec)
NOL&T -- default in interactive mode
LIST -- default for background processes

This switch generates a listing file. The default filename is
derived fro the source filename, with a .LIS extension. The4
listing-.file-spec can be optionally specified.

E7r.0 frTWA4P LTD

TLD ADA COMPILER i960-ADA-2C
COMPILER USAGE 3 - 20

LOG
NOLOG -- defsuit

This switch causes the c .ler to write in the c•ilation log,
cand line options and the file specification of the Ada source
file being compiled which is written to to SYSSOOTPOT (the
operating system' s standard output). This switch is useful in
examining batch output logs because it allows the user to easily
daeterine which files are being compiled.

MACRo
NOMACRo -- default

This switch produces an assembly like object code listing appended
to the source listing file. The LIST switch must be enabled or
this switch has no effect.

MAIN ELB
NOMAIN..zx.a -_ default

This switch makes the coiler treat the ilation unit being
compiled as a user-defined elaboration or setup program which is
used instead of that normally produced by the ELABORATOR switch.
The source file must be specified instead of a unit name of a
previously compiled procedure. Usually, the source file is
modified by the user, starting from the version produced by the
WRT•EELAB switch.

MAXMUJIRS-n
MAXmums.S500 -- default

This switch assigns a value limit to the number of errors forcing
job termination. Once this value is exceeded, the cmpilation is
terminated. Zn formation-level diagnostic messages are not included
in the count of errors forcing termination. The specified value's
range is from 0 to 500.

MODu•,nmode -name

if this switch is not specified, TLDada pzovides compilation
capabilities that are comeon to all models of the target.

If this switch is specified, where model-name is one of the models
below, TLDada pzrovdes ccepilation capabilities that are valid for
the specified model. The compilation that is performed for a
particular model may be valid for another model of the target if it
supports the same machine-specific code (machine instructions,
dmain, etc.) .

l7%0 7PWfrlg•0. L7

TLD ADA COMPILER i960-ADA-2C
COMPILER USAGE 3 - 21

-he follow•,ng are valid models:

SA
CA

IA
NX

NEW Lmuy
NONWmL R -- default

The ='ELjZ5ARY switch creates an 1960 subdirectory in your current
working directory and an 1960.L3I library in that subdirectory,
replacing the contents of the prior subdirectory and library, if
they existed.

The NONEWLIB.AXY switch checks if an 1960 subdirectory exists in
your current working directory and if it does not already exist, it
will create the 1960 subdirectory and an 1960.LIB library in that
subdirectory.

NOTE: This switch along with the PARM._TL33RARW switch replaces
the =U-XB I switch.

OBJECT(-object-file-spec}
OBJECT - - default
NOOnjEcT

This switch produces a relocatable object file in the 1960
subdirectory in the current compilation directory. The default
filename is derived from the source filename, with a '.0•J.'
extension.

OPT -- default
OPT{ (parameter{...)))NOOP-T
NOOPT{. (parameter(....)))

This switch enables the specified global optimization of the
compiled code. The negation of this switch disables the specified
global optimization of the ccapiled code.

7'T.D 71•-0 PTW LT"0

TLD ADA COMPILER 1960-ADA-2C
COMPILER USAGE 3 - 22

When the OPT switch is entered, without any parameters, all
optimizations listed below are turned on. This restores the
parameters to their defaults. When it is entered with parameters,
only the specified parameters are turned on.

When the IQOOPT switch is entered, without any parameters, all
optimizations listed below are turned off. When it is entered with
parameters, only the specified parameters are turned off.

Default optimizations such as C q-BO_ rMSSZC,
CONSTAT ARITHMTC, DE.p_caOD, and VAT=.FOL_ va, etc. should MM
be changed for normal use. Users may wish to change these
optimizations for configuration or testing purposes, however, 7W
Systems recomends that they not be changed. These default
optimizations should be changed only when there is an abnomal
situation with data or the program or a bad, TLD- or user-created
algorithm. For example, if the program has an umused procedure the
default optimization parameter DED_ SBPROGRAM default will delete
it for production improvement, however, the user may not went the
unused procedure deleted for Debugger purposes. If users are
finding a need to change these optimizations, please notify TLD
Systems so that we can resolve the problem more efficiently.
The follovina naram-eers ma- be used with the /OP?•,ad /NOOPT

swithep.-

CODE-Nov==1

This parameter moves code to improve execution time. (For
example, moves invariant code out of a loop). This parameter
is turned on by default.

CODE-Smm~=

"This parameter ensures that program flow is well formed by
performing rearrangement of segments of code. This parameter
is turned ou by default.

COKICIq-Suzzn~sszon

Expressions with the same operands are not computed a second
time. (For example, if an expression uses "A + an and another
expressions uses 'A + 30, the Cospiler does not compute the
second expression, since it knows it has already computed the
value). This parameter is turned on by default. WMNZNG:
"Turning this switch off may cause unexpected results.

7%0 lTDMOwaN LMT

TLD ADA COMPILER r960-ADA-2C
COMPILER USAGE 3 - 23

CONwsv.LrnnmT=c

This parameter perf or=s constant arithmetic. This pa=ameter
is turned an by default. WAMMIN: Turning this switch off
may cause unexpected results.

DEAD_.COD

This parameter removes code that cannot be reached such an
unlabeled code following an unconditional branch. This
parameter in turned on by default. MATWIM: Turning this
switch off may cause unexpected results.

DEAD...SUPRoRm=

This parameter remves s-bprograms that are not referenced.

This parameter is turned on by default.

DEADjVjumxA

This parameter removes local temporary variables that are not
used during execution. This parameter is turned an by
default.

DELAssicu

This parameter optimizes code by deleting redundant
assigments. it only performs deletions allowed by the
semantics of Ada. This parameter is turned an by default.

By default, the compiler automatically inlines subprograms
that are not visible in a package spec and if the estimated
code size is smaller than the actual call, it will inline it.
This parameter is turned an by default.

LI2'mzL yomz

This parameter overrides the Compiler' a optimization
separation of compile time constants into a separate memory
pool. This parameter enables the user to exercise complete
control over data allocation. This parameter is turned an by
default.

LOop UNOLI

This parameter applies to register meoZ•y only. It causes an
expression computed at the end of a loop to be remembered at
the top of the next iteration. This parameter is turned on by
default.

7f', 7.0 iN7WWh" L.7W

TLD ADA COMPILER i960-ADA-2C
COMPZLER USAGE 3 - 24

This parameter perf-ozms optimization in very limited

contexts. This parameter is turned on by default.

I G's7,'sn_De~xc -=c=

This parameter allows dedication of a register to an object or
expression value. This par.miter is turned on by default.

SCuxMMMS

Thins parameter is used to activate the reorganizer phase of
the Compiler. instruction Scheduling, as perf rmmed by the
Reorgani.er, is & phase between the Code Generator and the
Object Formatter phases. The Reorganizer reads the Code Pile,
reorders the code, and outputs the Code File. This parameter
is turned off by default.

The purpose of the Reorganizer is to perform optimization on
the code generated by the Code Generator In order to minimize
the amount of time that the hardware has to wait for data,
generated by earlier instructions, to become ready for use.

NOTE: If you choose to use this switch, TLD recomends that
the System Administrator set the user's page file quota to
at least 60,000.

This parameter creates one object module per milation unit
rather than one for each top-level subprogram. If this
parameter is not used, and the compilation unit spec and body
are in separate f iles, the extension a.bw is added to the
package name in the object file name of the package body
(i.e., package-name]b. obj) to differentiate between the
package body and spec. The user may locate cesects from only
the body or spec by specifying the unique object filename
(package-name~b for the body or package-name for the spec)
followed by the control section name. This parameter is
turned on by default.

STRw=iýmwyZuCTZO

This parameter selects operators that execute faster. This

parameter is turned on by default.

7JL, 7%W TWP. LTD

TLD ADA COMPILER x960-ADA-2C
COMPZLER USAGE 3 - 25

Substitutions of operands known to have the same value are
perfozued before expression analysis optmisat.ion. (For
eaeale. if B and C have the same value, the expression 8A +

CO is used and 'A. + D will be recognixed as commn and the
C.mpiler will not compute the seccnd expression, sinse it
knows it has the same value as the first). This parameter is
turned on by default. RAFMM: Trning this switch off may
cause unexpected results.

PAz..•iin. -per-page
PA~z.6o - - default

This switch assigns a value to the number of lines per page for
listing. The value can range from 10 to 99.

PAREi!, LRma-parent - ibrary.- pec
NOPARE~iqrzý_Lway - default

The PAREMT.LIBRARY switch uses the specified library as the parent
library for the library to be created. 1750A must be included at
the end of the pa.enc-lbra.y-apec. This switch may only be used
with the NEWLXBRARY switch.

If the NOPAREVTLZ3RAW switch is used, the library created by the
NEW-LIUM. switch will have no parent library.

N=OT: This switch along with the =1EWL.RAUM switch replaces the
MM-LIB switch.

PARMs
NOPARMs -- default

This PAPJTMET switch causes all option switches governAing the
compi1ation, including the defaulted option switches, to be
included in the listing file. The LIST option switch must also be
selected or this switch has no effect. User specified switches are
preceded in the listing file by a leading asterisk (*). This
switch adds approximately one page to the listing file.

RuaN - - default
NOPHsz

This switch suppresses the display of phase names during
compilation. This switch is useful in batch jobs because it
reduces the verbosity of the batch log file.

"7tu wwTLD W •m .T&

TLD ADA COMPILER z960-ADA-2C
COMPILER USAGE 3 - 26

REF ID casz.ctRmo
NORIEFIDCASI pticO - defauit

This is & re•fomatting optio, under the cotrl of the RE7OM
switch. This switch determines how variable names appear in the
c=Wiler listing. The options for this switch are:

ALL LOKJVR - A- ll variable names are in Irove case.
ALIOPPm -- All variable names are in upper case.
=7 AL-CAPS -- ll variable names have initial caps. -- default

REF Ki, c:.n.epict-o
NOREFKz'Y_:sz=Apt.r .. default

This is a ref ormatting option, =der the control of the RhFORT
switch. This switch determines how Ada key words appear in the
compiler listing. The options for this switch are:

ALL LOWER -L- All Aft key wor are in lower case. -- default
ALLuPp -- All Ada key wod are in upper case.
nazT CIS - - All Ada key words have initial caps.

REFORm{ ==refoarc-fie-apec)
NOREFOmixT - - default

This switch causes the cIiler to refczat the source listing in
the listing file (if no refazine-fil.-ape was prowided) or
generate a ref ormatted source file, if a refazmat-file- spec is
present. The default file extension of the ref oruatted source file
is I.RFI. R•eforatting consists of uniform indentation and retains
numeric literals in their original source fozm. This switch
performs the reformatting as specified by the REFXZ CASE,
RZJETCASED and WZVDT=') ff switches.

SOURCE - - default
NOSOmm

This switch causes the input source program to be included in the
listing file. Unless they are suppressed, diagnostic messages are
always included in the listing file.

SYNTAx oLY
NOSYNizomy -. default

This switch perfozms syntax and semantic checking on the source
program. No object file is produced and the MCRO switch is
ignored. The Ada Program Library is not updated.

-%.0 MM7WPA L.r

TLD ADA COMPILER z960-ADA-2C
COMP:LR USAGE 3 - 27

TAT-aari9so- default

This switch selects th.e target computer for which code is to be
generated for this milution. ig.o0 selects i960 a-rctbecture

operation.

WAIUxNOS - - default
NOWARzinas

The WIrMWS switch outputs warning and higher level diagnostic
messages.

The OIVUARNXGS switch suppresses the output of both warning-level
and information-level diagnostic messages.

WIDM1=€haracters -per- 1ne
WI'rr=':o - -- default

This switch sets the number of characters per line (80 to 132) in
the listing file.

WORtD STORE
NOWM zToRoz -- default

The WORDSTOR switch simulatu byte and half-wod stresa by using
full word instructions. This will allow only full wor stores to
be performed. The OWVODSTOQR switch will allow byte and
half-word stores to be performed.

WRxTz am~
N0_WRiT'z SL -- default

The WXZTELAB switch generates an Ada source file which represents
the main elaboration "setup program created by the c iler. The
unit name of a previously compiled procedure must be specified
instead of a source file. The WRITE E, LAB switch may not be used at
the same time as the ELAORAOR switch.

XTRA
NOXTu- default

This switch is used to access features under development or
features not defined in the LRK. See the description of this
switch in Section 3.13.

TLD AMNIAEM WW

COMPILATICN SYSTEM OPTICNS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.

B-2

TLD 32-BIT UNIVERSAL LINKER x960-LNK-2C
DIRECTXVE LANGUAGE 4 - 1

4 DIRECTIVE LANGUAGE

On any host, the co.mand line calling TLDlnk may optionally specify a
linker directive file to control the linking operation. The directive
file format and individual directives are described in the following
pages.

4.1 DIRECTIVE FILE

Each line of the directnve file contains up to 132 characters. Tabs
are treated as blanks. Blanks are used to separate words when no other
punctuation separates them; the actual number of blanks is
insignificant. Characters that follow two successive minuses (--) are
ignored.

A directive ordinarily consists of one line of input, however, lines
may be continued using a tilde (-). Only one directive is allowed per
input line. A continuation character can be used to continue directive
values, however, a value cannot be split between two lines (if the
value does not fit on the current line, the continuation character must
be used after the previous value and the value must be placed on the
following line). Either upper or lower case may be used (they are are
equivalent) except for file names on hosts with case-sensitive file
names.

A directive file may include another directive file. The format of

this directive is:

INCLUDE filespec(. inki

where the file extension .Ink may be optionally specified if the file
is a directive file, otherwise, if the file is an object module file,
its extension must be supplied (i.e., .obj or .olb must be supplied).

An included file may itself include another directive file, that is, in
the example above, filespec. Ink may contain yet another directive
file. The level of nested directive files allowed depends on the
number of files that :he operating system permits to be opened
simultaneously.

B-24

7f-LOW roto

TLD 32-BIT UNIVERSAL LINKER i960-LNK-2C
DIRECTZva LANGUAG, 4 - 2

Conditional linking may be perfaormed in the directive fle. The format
of this condit.onal linking is:

if logical-expression then

(else I elsif 20gica.l-expreaazon then)

endif

If the logical-expression returns a true value, the statements
following the if or the elsif clause will be processed, otherwise, the
ones following the else clause will be processed.

4.2 DIRECTIVES

TLDlnk directives are described in this section, in alphabetical order.

The following words, in lower case italics, are used in the
descriptions:

caect -name

This is the name of the control section in the program being
linked.

file

This is a host file specification. A file specification must be
completely contained on a line.

group -name

This is a control section that includes specified modules and/or
cn trol sections of module(s).

module -name

This is the name of a module in the program being linked.

paddress

This is a physical address in the form of a hexadecimal number
from 0 to FFFFF.

B-25

7%r..0 .FrMW 4.7W

TLD 32-BIT UNIVERSAL LINKER z960-LNK-2C
DIRECT!Va LAAGUAGI 4 - 3

ppage

This is a physical page number in the form of a hexadecimal
number from 0 -to FIFFF.

symbol

This is the name of an external symbol in the program being
linked.

vaddress

This is a virtual address in the form of a hexadecimal number
from 0 to FFFFMFF (2**32

vpage

This is a virtual page number in the form of a hexadecimal
number from 0 to FFFFF.

Each TLDlnk directive is described below.

ASSIGN (vpage=ppage{, ...)

The ASSIGN directive causes the specified virtual page to be
mapped to the corresponding physical page.

For example,

ASSIGN (40000CO)

causes the specified virtual page 40000 hex to be mapped to the
physical page CO hex.

ASSIGN (40000CO., 10000-80)

causes the specified virtual pages 40000 hex and 10000 hex to
be mapped to the physical pages CO hex and 30 hex,
respect.vely.

COMMENT (a} {"} Text to be put in Load Module{"}

The COM2ET directive contains text which TLDlnk puts in the
load module. TLDink precedes the text within quotes by ";;" to
distinguish user inserted comments from those inserted by
TLDlnk which begin with ";". All comments specified by CO=G=1T
directives are inserted in the load module immediately
following the ini:tal cmaent which is created by T--Dlnk. Zf

B-26

TLD 32-BIT UNIVERSAL LINKER x960-LNK-2C
DIRECTIVE LANGUAGE 4- 4

quotes are specified. they must exi.s: at the begi.nning and end

of the text to be treated as a coment.

DEBUG {efile

When DEBUG is used the linker creates a debug file containing
symbols and their values for the symbolic debugger and a
traceback file containing call and branching information. If
DEBUG is not specified, the linker does not produce the debug
file and traceback file. The linker puts symbols which were
included in the relocatable object file in the debug file and
traceback information also in the relocatable object file in
the traceback file. The name of the debug and traceback files
are derived the same way the map file name is derived as
described in the MP switch. The format of the debug and
traceback files is described in Appendix A.

This directive has the same functionality as the linker switch

DEBUG described in Chapter S.

END

This directive is always required (if the End-of-File is not
present). It terminates directive input to TLDlnk, so that any
subsequent input is ignored. After this directive is read,
TLDlnk allocates memory and reads the object files to produce
the load module.

FILL (vaddr-vaddress, lennsize-in-byces, {")pac:ez={"))

The FILL directive is used to fill in all unused memory with a
user- specifiable value.

The vaddress parameter is the start.ng virtual address of the
fill region, the size-in-bytes parameter is the number of bytes
to be filled with the pattern, and the pactet= parameter is the
pattern used to fill in the fill region. The pair of double
quotes (" ") are required if the fill pattern is a character
string.

GROUP {:group-name,} (nameL{,name2... }){(a..buce{, .

This directive creaces a grouping of control sections. The
argument name can be module-name, module-name:csec:-name, or
:gr•up-name. Zf module-name is spect.fied (without :csecr-name)
then the wild card "*" is assumed for the csecr-name and all
control sections of the specified load module are used.
Because the group-name is associated wi.th the "nut1" module, .t
is always preceded by the null module name: a colon (:). The
group name becomes a new control secc-.on that Includes the

B-27

-- aO"M 7 f m 7W

TLD 32-BIT UNIVERSAL LINKER i960-LNK-ZC
DiRECTivE LANGUAGE 4 - S

specified control sections and the included control sections
way nor be specified in any other group. If attr-butes are
specified, then only those control sections with the speci-fied
attributes will be included in the group and the goup' s
attributes consist of only those specified in the directive.

This directive. as well as the SET directive, can refer to
attributes in pragma Attribute in the source file. Refer to
the Reference Document for the TLD Ada Ccmiler for further
information regarding pragma Attribute.

If no data or code attribute is specified and an instruction
(code) control section is included in the specification, the
group will have the code attribute. If data control section(s)
are also specified. a warning message is displayed indicating
that the group contains mixed instruction and data control
sections and that the code attribute is assumed for the group.
If no data or code attribute is specified and no instruction
(code) control section is included in the specification, the
group will have the data attribute.

The alimment of the group is by the "least common denominator"
of all control section alignment values. The length of the
group is the sum of the lengths of the included control
sections plus necessary alignment. The length (as well as
other attributes) of the group may be changed by the SET
directive. After all explicit GROUP directives have been
applied, the Linker groups any remaining ungrouped control
sections and groups by similar attributes. Groups may be used
in other group directives.

Attributes may be one or more of the following to select groups
with those at:trbutes. The boolean attributes are separated by
a coana to denote a logical AND.

READ
is a boolean TRUE if the csect is all readable,
otherwise, it is FALSE.

NOREAD
is a boolean TRUE if the cssc: is not all readable.
otherwise, it is FALSE.

WRITE
is a boolean TRUE if the csect is all writable,
otherwise, it is FALSE.

NOWRITZ
is a boolean TRUE if the csect is not all writable,
otherwise, it is FALSE.

B-28

TLD 32-BIT UNIVERSAL LINKER i960-LNK-2C
DIRECTIVE LANGUAGE 4- 6

CODE
is a boolean TRUE if the csec: is all cod*, otherwise,
it is FALSE.

NOCODE
is a boolean TRUE if the csect is not all code,
otherwise, it is FALSE.

DATA
is a boolean TRUE if the csec: is all data, otherwise,
it is FALSE.

NODATA
is a boolean TRUE if the csect is not all data,
otherwise, it is FALSE.

To allow grouping of more control sections than can fit in a
single directive line, a continuation character can be used or
the GROUP directive can be repeated (using the same group name)
as many times as needed to include all control sections needed
within that group. For example, if the following is in the
linker directive file:

GROUP :Group1=(ab,c)...
GROUP :Group1 m(d,e, fI . ..

Group_1 will contain a,b,c,d,e, and f.

Wild card symbols as previously described may be included in
the module-name, csec:-name, and group-name (which is not the
name of the group, but a group to be included).

The ordering of the wild card specifications within the linker
directive file is important. If any wild card specification is
a subset of another, the subset should be listed first. For
example, if the following groups are in the linker directive
file:

GROUP :Group_1u(abc°:lirn)...
GROUP :Group_2=(ab*:im-) ...

control section "abcd:linO" will be included in Group_1, and
since it has been included into a group, will not be included
in Group 2.

The following is an example of incorrect ordering, where the

subset is listed after its containing set:

GROUP :Group_-=(ab:1im-) ...

B-29

7fLaMUM mo TD

TLD 32-BIT UNIVERSAL LINKER z960-LNK-2C
DIRECTIVE LANGUAGE 4 - 7

GROUP :Groupiz(abc-:2!rn-) ...

in this example, control section "abcd:lno* will be included
in Group_2, and since it has beon included into a group, will
not be included in GrouplI.

INCLUDE((} e,....{)}

The INCLUDE directive specifies the file(s) used for subsequent
linker input . This is the only linker directive that requires
a complete filenam (i.e., no file type or extension is
appended to the supplied name). If the file name ends in .obj
or .olb, the file is assumed to be an object module file. If
the file name ends in .lnk, the file is assumed to be a
directive file. If only one filespec is specified, the
corresponding parentheses are not required. This directive may
be repeated.

NOTE: The GROUP and SET directives are used, instead of this
directive, to make specific selections of modules and/or
control sections to be included in the link.

A directive file may include another directive file. The
format of this directive is:

INa.UDE filespec(. Ink

where the file extension .lnk may be optionally specified if
the file is a directive file, otherwise, if the file is an
object module file, its extension must be supplied (i.e., .obj
or .olb must be supplied).

An included file may itself include another directive file,
that is, in the example above, filespec.Ink may contain yet
another directive file. The level of nested directive files
allowed depends on the number of files that the operating
system permits to be opened simultaneously.

LET sytbo.l = expression

When LET is used, the linker sets the specified symbol to the
specified value or expression. This directive has the same
effect as defining the symbol as an EXPORT in an object
module. Any external references to the specified symbol from
an object module are set to the value specified in the LET
directive. Currently, the expression argument must be a
hexadecimal number.

B-30

.. 7gLawvYwA 4 ELM

TLD 32-BIT UNIVERSAL LINKER z960-LNK-2C
DIRECTIVE LANGUAGE 4 - 8

LIBRARY.{(} f-1e{...)

This directive causes the specified object module library or
libraries to be searched to resolve undefined symbols. The
parentheses are not required if only one filespec is specified.

The order thac the filespecs are specified is the order in
which they are searched. If library is used both on the
command line and in the directive file, the libraries specified
an the command line will be searched first followed by those
specified in the directive file.

TLDlnk will process the library directive or switch at the
point where it is specified, therefore, it should be specified
after includes and searches.

This directive has the same functionality as the linker SEARCH
directive and LIBRARY switch which is described in Chapter 5.

MEMORY (Uemtypename, base-address, !engrt_in-words, -
word size in bits)

This directive describes a memory unit other than i960 standard
memory to which TLDInk will allocate control sections
containing objects specified in pragma Memory Unit. The
a tzype_name argument is the character string specified Pragma
Merozy Unit, the base address argument is the starting address
hex value in special memory where the memory unit objects are
to be allocated, the length in words argument is the hex value
of the size in words of the special memory location, and the
wozrdsizeimbbics argument is the hex value of the size in bits
of each word of special memory.

RESERVE(vaddrovaddress, len-sizeiný_byces{,...})

This directive indicates that no relocatable control sections
are to be loaded into the specified address space.

SEARCH file

When SEARCH is used, TLDlnk searches the specified file for
modules which define currently undefined external references.
These modules are included as if they had been specified in an
INLUDE directive. Undefined weak external references (i.e.,
associated with WEAK nORT) do not cause inclusion on a
search, but if an external is weakly referenced (i.e.,
associated with WEAK :MPORT) and strongly referenced (i.e., a
regular MPORT), its defining module is loaded by SEARCH. New
external references fr=m modules included f!rm the search file
may cause additional modules to be included from the search

B-31

7fL AWm L^Z TC

TLD 32-BIT UNIVERSAL LINKER i960-LNK-2C
DiRECTiVE LANGUAGE 4 - 9

file. regardless of the order of modules in the search file.
For exa ple, if the program references only S. S references T,
and the librazy contains T !ollowed by S, both S and T are
included from the libxvry.

This directive has the same functionality as the linker LIBRARY

directive and L33RARY switch which is described in Chapter 5.

SET nam' { ()accribucelrva.Luel{,accxibuce2=value2 {) }

This directive sets each specified attribute to the
corresponding value for the specified control section or
group. The argument name can be module -name,
module-name:csect-name. or :group-name. If module-name is
specified (without :csecc-name) then the wild card "** is
assumed for the c$ect-name and all control sections of the
specified load module are used. The parentheses are requiroed
only if more than one attribute is specified. Because the
group-name is associated with the "null" module, it is always
preceded by the null module name: a colon (:).

This directive, as well as the GROUP directive, can refer to
attributes in pragma Attribute in the source file. Refer to
the Reference Document for the TLD Ad& Comiler for further
information on pragma Attribute.

If no data or code attribute is specified and an instruction
(code) control section is included in the specification, the
control section or group will have the code attribute. if data
control section(s) are also specified, a warning message is
displayed indicating that mixed instruction and data control
sections have been included and that the code attribute is
assumed for the group. If no data or code attribute is
specified and no instruction (code) control section is included
in the specification, the control section or group will have
the data attribute.

Wild card symbols may be included in the module-name and
csect-name consisting of "0" which matches one or more
characters and "?" which matches exactly one character. All
modules and control sections of the object module files listed
in the include directive(s) that match the wild card pattern
are selected.

B-32

7-Da 0Em4um L=D

TI.D 32-BIT UNIVERSAL LINKER z960-LHK-2C
DzRacrzva LANGUAGE 4 - 10

Attri•utes may be one or more of the followng to set or
reference an acttrbuce value:

VJWDDR
is the beginning virtual address of this csect. It
consis:s of a hex or decialI number. To set address (as)
in region 3, an eight-digit, non-negative, hex number
must be used.

PADDR
is the beginning physical address of this csect. Since
the linker does not no•mally assign physical addresses,
this at:r.bute must be set before it is referenced.

LEN(GTH}
is the length of this csect.

ALIGN
is the alignment used for this csect.

is a boolean TKRE if the csect is all readable,
otherwise, it is FALSE.

NOREAD
is a boolean TRUE if the csect is not all readable,
otherwise, it is FALSE.

WR=TE
is a boolean TRUE if die csect is all writable,
otherwise, it is FALSE.

NOWRZTE
is a boolean TRUE if the csec: is not all -,r:itable,
otherwise, it is FALSE.

CODE
is a boolean TRUE if the csect is all code, otherwise,
it is FALSE.

NOCODE
is a boolean TE if the csect -s not all code,
otherwise, it is FALSE.

DATA
is a boolean TRUE if the csect is all data, otherwise,
it is FALSE.

B-33

7fJLOWW0WM L

TLD 32-BIT UNIVERSAL LINKER i960-LNK-2C
DIRECTIVa LANGUAGE 4 - 11

is a boolean TRUE if the csect is =C- a11 data,
otherwise, it is FALSZ.

B-34

7fLD. W r ,,.LMTD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORT INTEGER is range -32768 .. 32767;
type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -2.12676E+37 .. 2.12676E+37;
type LONG FLOAT is digits 15

range -1.123_558_209_288_95E+307 .. 1.123_558_209_288_95E+307;

type DURATION is delta 2.0**(-14) range -86_400.0 .. 86_400.0;

end STANDARD;

C-I

APPENDIX F

The Ada language definition allows for certain machinedependencies in a
controlled maner. No machine -dependent syntax or somatic extensions or
restrictions are allowed. The only allowed iplmesntation-depeaden•.ce

correspond to implemsntaton -dependent pra•ms and attributes, certain
machins-dependent conventions, as mentioned in chapter 13 of the

NIL-STD-181SA; and certain allowed restrictions an representation
clauses.

The full definition of the implementation--dependent characteristics of

the TLD VAX/i96O Ada Compiler System is presented in this section
extracted from the compiler reference manual.

VAX/X960/TRONIX PAGE 1

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5- 1

5 z960 TARGET COMPILER

This section identifies correspondences between features of the TLUacs
and sections of the Ada Language Reference Manual (LRM).

5.1 LRM CH.1 - INTRODUCTION

The formal standards for the Ad& Programming Language are provided in
the Ada Lanauaae Reference Manual (LUN), ANSI/XIL-STD-181SA. TLD
Systems has developed TLDacs in the spirit of those standards.

The machine dependencies permitted by the Ada language are identified
in LRI Appendix F. No machine dependent syntax, semantic extensions,
or restrictions are allowed. The only acceptable implementation
dependencies are pragmas and attributes, the machine dependent
conventions explained in LRM Chapter 13, and some restrictions on
representation clauses.

TLD Systems has developed implementation-dependent software to
specifically conform to these restrictions and has developed
implementation- independent pragmas and attributes in the spirit of the
LRK. This software is described, below, in individual discussions that
follow the topical order (within chapters and appendices) of the LRM.
For a detailed description of the Run Time environment, refer to the
Reference Document for the TLD Ada Run Time System.

5.2 LRM CH.2 - LEXICAL ELEMENTS

The items described in this section correspond to the standards in
Chapter 2 of the LRU.

The following limits, capacities, and restrictions are imposed by
the Ada compiler implementation:

The maximum number of nesting levels for procedures is 10. There
is no limit to nesting of ifs, loops, cases, declare blocks, select
and accept statements.

ii

TLD ADA COMPILER i960-ADA-2C
z960 TARGET COMPILER 5 - 2

The maximum number of lexical elements within a language statement,
declaration or pragma is not explicitly limited, but limited
depending on the combination of Ada constructs coded.

The maximum number of procedures per compilation unit in 5oo.

The maximum number of levels of nesting of INCLUDE files is 10.
There is no limit on the total number of INCLGDEd or WITHed files.

Approximately 2000 user-defined elements are allowed in a
c=Wilation unit. The exact limit depends upon the characteristics
of the elements.

A maximum of 500 severe (or more serious) diagnostic messages are
allowed for a compilation.

The range of status values allowed is the same as the range of
integer values, -2147483648..2147483647.

The maximum number of parameters in a procedure call is 20.

The maximum number of characters in a name is 120.

The maximum source line length is 120 characters.

The maximum string literal length is 120 characters.

The source line terminator is determined by the editor used.

Name characters have external representation.

5.3 LRM CH.3 - DECLARATIONS AND TYPES

The items described in this section correspond to the standards in
Chapter 3 of the LPN.

Number declarations are not assigned addresses and their names are
not permitted as a prefix to the 'address attribute.

Objects are allocated by the compiler to occupy one or more 8 bit
bytes. Only in the presence of pragma Pack or record representation
clauses are objects allocated to less than a word.

"Address can be applied to a constant: object: tO return the address

of the constant object.

Except for access objects, uninitialized objects contain an

ii

TLD ADA COMPILER x960-ADA-2C
2960 TARGET COMPILER 5 - 3

undefined value. An attempt to reference the value of an
un3.nJtialized object is not detected.

The maximim number of enumeration literals of all types is limited
only by available symbol table space.

The predefined integer types are:

Integer range -2_147 483_648 .. 2147_483647.
Short• Integer range 732 768 .. 32_768

System.MinInt is -2147483648.
System.Mmxnt is 2147483647.

The predefined real types are:

Float digits 6.
Long_Float digits 15.

System.MaxDigits is 15.

There is no predefined fixed point type name. Fixed point types
are implemented as data depending upon the range of values by which
the type is constrained.

Index constraints and other address values (e.g., access types) are
limited to 2147483647.

The maximum array size is limited to 2147483647.

The maximum string length is 2147483647.

Access objects are implemented as an unsigned integer. The access
literal Null is implemented as 0.

There is no limit on the number of dimensions of an array type.
Array types are passed as parameters opposite unconstrained formal
parameters using a descriptor packet vector.

Additional dimension bounds follow immediately for arrays with more
than one dimension.

Packed strings are generated instead of unpacked strings.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARGET COMPILER 5 - 4

5.4 LRM CH. 4 - NAMES AND EXPRESSIONS

The items described in this secteon correspond to the standards in
Chapter 4 of the LRK.

Machineoverflows is True.

Pragma Controlled has no effect since garbage collection is never

perf ozmed.

5.5 LR4 CH.5 - STATEMENTS

The items described in this section correspond to the standards in

Chapter S of the LRK.

The maximum number of statements in an Ad& source program is
undefined and limited only by symbol table space.

Unless they are quite sparse, Case statements are allocated as
indexed jump vectors and therefore, are very fast.

Loop statements with a "for" implementation scheme are implemented
most efficiently if the range is in reverse and down to zero.

Data declared in block statements is elaborated as part of its
containing scope.

5.6 LRI CH.6 - SUBPROGRAMS

The items described in this section correspond to the standards in
Chapter 6 of the LRM.

Arrays, records, and task types are passed by reference.

5.7 LR4 CH.7 - PACKAGES

The items described in this section correspond to the standards in
Chapter 7 of the LPN.

Package elaboration is performed dynamically, permitting a warm
restart without reloading the program.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5- 5

5.8 IRM CH.8 - VISIBILITY RULES

not applicable.

NOTE: TLD has not produced a modification of the item(s) described in
this LEM section or documentation parallel to the inf'ormation in this
LXE sectioni.

5.9 LRM CH.9 - TASKS
The it ems described in this section correspond to the standards in
Chapter 9 of the LM.

Task objects are implemented as access types pointing to a Process
Control Block (PCB).

Type Time in package Calendar is declared as a record containing
two integer values: the current value of the real time clock
counter and the number of ticks that have elapsed on the countdown
timer.

Pragma Priority is supported vith a range defined in package
System. The restriction on a dynamic expression for a task',
priority has been removed consistent with Ada 9X. Note: Like Ada
9X, a pragma Priority placed in the main subprogram remains
restricted to a compile time static expression.

Pragma Shared is supported for scalar objects.

TLDada allows either a duration or a clock time to be specified in
a delay statement. If a duration is specified, the task is delayed
for that duration. If a clock time is specified, the task is
delayed until that clock time is reached.

The format for specifying a duration is:

delay expression

where expression is of type Duration.

The format for specifying a clock time is:

delay until expression

where expression is of type Calendar.Time.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARGET COMPILER 5 - 6

Package Calendar is described in the Reference Document for the
Run Tim Ssem. i960 Taroet.

5.10 LRP4 CH.10 - PROGRAM STRUCTURE/COMPILATION

Ada Program Library processing is described in the Reference Document
for the TLD Ada Library Manager. i960 Tarcet.

Multiple Ada Program Libraries are supported with each library
containing an optional ancestor library. The predefined packages are
contained in the TLD standard library, 1960.LZB

5.11 LRM CH.11 - ExCEPTIONS

Exception handling is described in the Reference Document for the TLD
Run Time System. i960 Target.

Exception objects are allocated access objects to the exception name
string. The implementation of exceptions is described in the Referenc
Document for the TLD Run Time System. i960 Taraet.

Exceptions are implemented by the TLD Ada Compiler System to take
advantage of the normal policy in real time computer system design to
reserve 50 of the duty cycle. By executing a small number of
instructions in the prologue of a procedure or block containing an
exception handler, a branch may be taken, at the occurrence of an
exception, directly to a handler rather than performing the time
consuming code of unwinding procedure calls and stack frames. The
philosophy taken is that an exception signals an exceptional condition,
perhaps a serious one involving recovery or reconfiguration, and that
quick response in this situation is more important and worth the small
throughput tradeoff in a real time environment.

TLDada allows one task to asynchrounously signal a another task by
raising an exception in the other task. The following Ada statement
may be used in an Ada program to exercise this capability:

raise exception name in cask name

There is no direct effect on the task raising the exception. It
continues executing the code following the raise statement. The
context of the target task is set so that the next time it runs, it
will act as if the exception had been raised at the point at which it
was last executing. This feature requires the compiler switch XTRA.

ii

TLD ADA COMPILER i960-ADA-2C
z960 TARGET COMPILER 5 - 7

5.12 LRM CH.12 - GENERIC UNITS

Generic implementation is described in the Reference Document for the
TLD Run Time System. i96O Tarugt.

A single generic instance is generated for a generic body, by default.
Generic specifications and bodies need not be compiled together nor
need a body be compiled prior to the compilation of an instantiation.
Because of the single expansion, this implementation of generics tends
to be more favorable of space savings. To achieve this tradeoff, the
instantiations must, by nature, be more general and are, therefore,
somewhat less efficient timewise. Refer to pragma Instantiate for more
information on controlling instantiation of a generic. I

5.13 LRM CH.13 - CLAUSES/IMPLEMENTATION
Representation clause support and restrictions are generally described

in Section S.2.F.

Additional Information

A comprehensive Machine-Code package is provided and supported.
The specification for this package is included in the
Machine Code_.Ada file.

The present version of the TLD i960 Ada Compiler System supports
two forms of code insertion language features. In addition to the
standard LRM form od record aggregate form of code insertions that
are fully supported, TLDacs supports an alternative form supplied
with package Machine-Code that defines a procedure for each i960
architecture instruction that is intrinsically implemented inline
by using a pragma Interface with a language type of i960; each such
procedure results in one instruction being inlined. Because a
procedure form is used, the restrictions placed upon the
Machine Code aggregate form of insertion that prohibit mixing in
the same scope with declarations, statements, and functions do not
apply. Furthermore, the procedure form offers a more friendly
syntax that corresponds more to assembler input that does not
require all fields to be specified (as is true for machine code
aggregates) and can make use of parameter defaulting for such
fields as index registers.

To further support those users who need to write at the assembly
level, several additional procedures and pragmas have been added
that assist the user in accessing Ada expressions, modifying Ada
operands, and in manipulating registers. Pragma Register may be

ii

TLD ADA COMPILER i960-ADA-2C
z960 TARGET COMPILER 5 - 8

applied to an Ada object to direct the compiler to allocate
(dedicate) the object to the designated register. Use of this
object on the left side of an assignment statement will result in
the right side expression being couted and loaded into the
register associated with the left side object, a la C register
variables. Use of the object in a value reference context will
result in a use of the value currently found in the associated
register. This approach permits direct access to values from
complicated Ada expressions, packed eand subscripted operands,
discriminated record components without having to know how the
compiler actually allocated the objects. Two additional procedures
are defined, Protect and Unprotect, which each take a register
parameter identifying a register that is to be reserved from
compiler use within the range of statements bracketed by the
Protect/Unprotect call pair.

Pragma Interface with a language type of Interrupt will result in
the prologue and epilogue of the indicated procedure generated to'
conform to the TLDrtx conventions for interrupt handlers. A
language type of Void will prevent the compiler from generating any
prologue or epilogue code and leave the responsibility for the
procedure entry and exit code to the statements within the
procedure: usually the above described intrinsically built-in
machine code procedures.

Unchecked-Deallocation and UncheckedConversion are supported.

Procedure Unchecked Deallocation (LRM 13.10.1)

Function Unchecked Conversion (LRM 13.10.2)

5.14 LRM CH.14 - INPUT/OUTPUT
The items described in this section correspond to the standards in

Chapter 14 of the LRW.

File I/O operations are not supported.

Input/output packages and associated operations are explained in
Section S.2.F of this manual.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARaET COMPILER 5 - 9

5.2.A LRH ApP.A - PREDEFINED LANGUAGE ATTRIsUTFS

The items referenced in this section correspond to the standards in
Appendix A of the LIX.

All LRM-def ined attributes are supported by the TLDacs.

5.23.B LRM App.B - PREDEFINED LANGUAGE PRAGMAS

The items described in this section correspond to the standards in
Appendix 8 of the LRX. Any differences from the implementation
described in the LRI are listed below.

PRAGMA CONTROLLED

This pragma is not supported.

PRAGMA ELABORATE

This pragma is implemented as described in the LRI.

PRAGMA INLINE

This pragma is implemented as described in the LKH.

PRAGMA INTERFACE

pragma interface (language name, Ada enti cy name{, string));
pragma interface (system, Ada enti yname);

Pragma Interface allows references to subprograms and objects that
are defined by a foreign module coded in a language other than Ada.

The following interface languages are supported:

o Assembly for calling Assembly language routines;
o Intel's i960 Architecture Specification for defining built-in

instruction procedures.

If the Ada enticy.name is a subprogram, LRK rules apply to the
pragma placement. Pragma Interface may be applied to overloaded
subprogram names. In this case, pragma Interface applies to all
preceding subprogram declarations if those declarations are not the
target of another pragma Interface.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 10

For example:

package Test is
procedure Pl;
pragma Interface (Assembly, P1, "AsmnRoutinel");
procedure P1 (x:LongFloat);
pragma Interface (Assembly, P1, "AmnRoutine_25);

end Test;

In the example above, the first pragma Interface applies to the
first declaration of procedure P1. The second pragma Interface
applies to only the second declaration of procedure P1 because the
first declaration of P1 has already been the object of a preceding
pragma Interface.

If the Ada Entity MNme is an object, the pragma must be placed
within the same declarative region as the declaration, after the
declaration of the object, and before any reference to the object.

Void may be used as the languagename to prevent the compiler from
generating any prologue or epilogue code and leave the
responsibility for the procedure entry and exit code to the
statements within the procedure.

If the third parameter is omitted, the Ada name is used as the name
of the external entity and the resolution of its address is assumed
to be satisfied at link time by a corresponding named entry point
in a foreign language module.

If the optional string parameter is present, the external name
provided to the linker for address resolution is the contents of
the string. Therefore, this string must represent an entry point
in another module and must conform to the conventions of the linker
being used.

An object designated in an Interface pragma is not allocated any
space in the compilation unit containing the pragma. Its
allocation and location are assumed to be the responsibility of the
defining module.

PRAGMA LIST

pragma List (on I off);

Compiler switch /LIST must be selected for the pragma List to be
effective.

ii

TLD ADA COMPILER z960-ADA-2C
x960 TARGET COMPILER 5 - 11

PRAGMA MEMORYSIZE

pragma Mmmory Size (numeric literal);

This pragma is not supported. This number is declared in package
System.

PRAGMA OPTIMIZE

This pragma in not supported. Compiler switches control cempiler
optimization.

PRAGMA PACK

This pragma is implemented an defined in the LRM.

PRAGMA PAGE

This pragma is implemented as defined in the LRX.

PRAGMA PRIORITY

This pragma is implemented as defined in the LW3. Priority
contains a range defined in System .Ada.

PRAGMA SHARED

This pragma is implemented an defined in the LRK. This pragma may
be applied only to scalar objects.

PRAGMA STORAGEUNIT

pragma StorageUnit (numeric literal);

This pragma is not supported. This number is declared in package
System and has 8 bits per byte.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARGET COMPILER 5 - 12

PRAGMA SUPPRESS

pragima Suppress (accessucheck);
pragma Suppress (allchecks);

The a•11checks parameter elim-naten all run time checks with a
single pragma. In addition to the pragma, a compiler svitch
permits control of run time check suppression by comand line
option, eliminating the need for source changes.

pragma Suppress (discriminant-check);
pragma Suppress (division check);
pragma Suppress (elaboration check);
pragma Suppress (index check);
pragma Suppress (lengthcheck);
pragma Suppress (rangecheck);
pragma Suppress (overflow check);
pragma Suppress (storage check);

PRAGMA SYSTEMNAME

pragma System-Name (eaumerat.io•_1iteral);

This pragma is not supported. instead, compiler option is used to
select the target system and target Ada library for compilation.

5.2.C LR4 APP.C-PREDEFINED LANGUAGE ENVIRONMENT
The items described in this section correspond to the standards in

Appendix C of the LRX.

PACKAGE STANDARD

The specification for this package is included in the Standard .Ada
file.

5.2.D LRM APP.D - GLOSSARY

Not applicable.

ii

TLD ADA COMPILER i960-ADA-2C
z960 TARGET COMPILER 5 - 13

5.2.E LRM App.E - SYNTAX SUMMARY

Refer to "Appendix B. Ada Language Syntax Cross Reference" for the TLD
ross -referenced expression of this information.

5.2. F LRM App. F - IMPLEMENTATION CHARACTERISTICS
The item described in this section correspond to the standards in

Appendix F of the LRN.

IMPLEMENTATION-DEPENDENT PRAGMAS

PRAGMA ADDRESSSPACE

pragma AddressSpace (name(, subsystemname});

This pragma allows users to specify the association of a
compilation unit with a logical address space. This capability
will support the definition of i960 Extended Architecture "Domains"
and domain calls.

The following switch may be entered on the TLDada command line and
used instead of this pragma to associate compilation unit(s) with a
logical address space.

/add essspace.namea (name, subsyaeem name)

In either the pragma or the switch, name is the name of the address
space and subsystem-name is the name of the subsystem to which the
address space belongs. If subsystem name is not supplied, then the
address space does not belong to a subsystem.

This pragma may appear in any compilation unit. The command line
switch may appear in any compilation, and applies to all the
compilation units in the compilation.

This capability does not yet allow users to indicate objects that
are to be implemented and referenced as independent objects.

TLDlnk will verify that all compilation units in the link have an
address space attribute of the same value, or have no address space
attribute and will create either a domain (if an address attribute
is specified) or a program (if no address space attribute is
"specified).

ii

TLD ADA COMPILER c960-ADA-2C
z960 TARGET COMPILER 5 - 14

PRAG•IA ADDRESSSPACEENTRY

pragma AddressSpace Entry (name(, entry number) (, enc.rype});

This pragma allows users to indicate which subprograms represent
entries into the defined logical address space. This capability
will support the definition of i960 Extended Architecture "Domains"
and domain calls.

The name is the name of a previously declared subprogram, the
entry.umber is an integer expression which is evaluatable at
compile time, and the entry type is one of the following: Local,
Supervisor, or Subsystem. Zf entry type is not specified, it
defaults to Subsystem.

This pragma may appear only in a campilation unit for which an
address space has been specified either by pragma or command line
switch.

This capability does not yet allow users to indicate objects that
are to be implemented and referenced as independent objects.

TLDlnk will verify that all compilation units in the link have an
address space attribute of the same value, or have no address space
attribute and will create either a damain (if an address attribute
is specified) or a program (if no address space attribute is
specified).

PRAGMA ATTRIBUTE

pragma Attribute (Attribuce-NamewýAceribute-Value, -
Item-Name{,...));

This pragma allows grouping of control sections with the specified
attribute.

If rIem-Name is amitted, the specified attribute applies to all
control sections in the current module.

If Item-Name is Name'csect, the specified attribute applies to the
control section of the module containing Name. Name may be a
label, procedure, or data object.

If Item-Name is Name'code, the specified attribute applies to the
code control section of the module containing Name.

ii

TLD ADA COMPILER x960-ADA-2C
x960 TARGET COMPILER 5 - 1s

If Item-Na=e is NaMes'data, the specified attribute applies to the
data control section of the module containing Name.

If Item-Name is Name, constant, the specified attribute applies to
the constant control section of the module containing Nam.

No other form of Item-Name is allowed.

The linker directives GROUP and SET, described in Chapter 4 of the
Reference Document for the TLD Linker can refer to attributes in
pragma Attribute in the source file.

PRAGMA AUDZT

pragma Audit (Ada--ame{,... });

This pragma causes an error message to be generated for the
compilation in which an Ada name, that is specified by this pragma,
is referenced. The Ada name may be a package, scope, data, etc.

PRAGMA COMPRESS

pragma Compress (subtype..name);

This pragma is similar to pragma Pack, but has subtly different
effects. Pragma Compress accepts one parameter: the name of the
subtype to compress. It is implemented to minimize the storage
requirements of subtypes when they are used within structures
(arrays and records). Pragma Compress is similar to pragma Pack in
that it reduces storage requirements for structures, and its use
does not otherwise affect program operation. Pragma Compress
differs from pragma Pack in the following ways:

"o Unlike pragma Pack, pragma Compress is applied to the subtypes
that are later used within a structure. It is = used on the
structures themselves. It only affects structures that later
use the subtype; storage in stack frames and global data are
unaffected.

"o Pragma Compress is applied to discrete subtypes only. It
cannot be used on types.

"o Pragma Compress does not reduce storage to the bit-level. It
reduces storage to the nearest "natural machine size". This
increases total storage requirements, but minimizes the
performance impact for referencing a value.

ii

TLD ADA COMPILER 1960-ADA-2C
x960 TARGET COMPILER 5 - 16

For example:

subtype SmallInt is Integer range 0 .. 255;
pragma Compress(SmallInt);
type tmIArray is array (I .. 1000) of SmallInt;

In this example, SmallInt will be reduced from a 32-bit object to
an unsigned 8-bit object when used in NumArray.

If pragma Compress had not: been used then SmallInt would be the
same size as Integer. This is because a subtype declaration should
not change the underlying object representation. A subtype
declaration should only impose tighter constraints on bounds. In
this manner a subtype does not incur any extra overhead (other than
its range checking), when compared with its base type. Pragma
Compress is used in those cases where the underlying representation
should change for the subtype, therefore:

" Small Int is compatible with Integer. It may be used anywhere
an integer is allowed. This includes out and in out parameters
to subprograms.

"o A SmallInt object is the same size as Integer when used by
itself. This minimizes run time overhead requirements for
single objects allocated in the stack or as global data.

"o SmallInt is 8 bits when used within a record or an array.
This can dramatically reduce storage requirements for large
structures. The access performance for compressed elements is
very near that of the un-compressed elements, but a slight
performance cost is incurred when the compressed value is
passed as an out or in out parameter to a subprogram.

NOTE: SmallInt' s storage requirements could be reduced by
declaring it as a type rather than a subtype, however, SmallInt
would not be compatible with Integer, and this could cause
considerable problems for some users.

PRAGMA CONTIGUOUS

pragma Contiguous (typename I object name);

This pragma is used as a query to determine whether the compiler
has allocated the specified type of object in a contiguous block of
memory words.

ii

TLD ADA COMPILER x96O-ADA-2C
z960 TARGET COMPILER S - 17

The compiler generates a warning message if the allocation is
noncontiguous or is undetermined. The allocation is probably
noncontiguous when data structures have dynamically sized
ccmonents. The allocation is probably undetermined when
unresolved private types are forward type declarations.

This pragma provides information to the programmer about the
allocation scheme used by the ccomiler.

PRAGMA EXPORT

pragma Export (Uanguagename, ada-en.tiLy_,yme, (string));

Pragma Export is a complement to pragma Interface. Export directs
the compiler to make the ads entityyname available for reference by
a foreign language module. The languagename parameter identifies
the language in which the module is coded.

Assembly is presently supported by Export. Ada is permitted and
presently means the same as Assembly. The semantics of its use is
subject to redefinition in future releases of TLDada. Void may be
used as the languagename to specify the user' s language
convention. As a result of specifying Void, the Comiler will not
allocate local stack space, will not perform a stack check, and
will not produce prologue and epilogue code. If the optional third
parameter, string, is used, the string provides the name by which
the entity may be referenced by the foreign module. The contents
of this string must conform to the conventions for the indicated
foreign language and the linker being used. TLDada does not make
any checks to determine whether these conventions are obeyed.

Pragma Export supports only objects that have a static allocation
and subprograms. If the ads enti y name is a subprogram, this
Export must be placed in the same scope within the declarative
region. If it is an object, the ads entity name must follow the
object declaration.

NOTE: The user should be certain that the subprogram and object
are elaborated before the reference is made.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARGET COMPILER 5 - 18

PRAGM4A IF

prgmag If (compile time-expreasaon);
pragmu Elsif (compile._ime.expresaion);
pragma Else;
prague End(if);

These source directives may be used to enclose conditionally
com-piled source to enhance program portability and configuration
adaptation. These directives may be located where language defined
pragmas statements, or declarations are allowed. The source code
following these pragmas is compiled or ignored (similar to the

semantcs of the corresponding Ada statements) , depending upon
whether the compile time expression is true or false,
respectively. The primary difference between these directives and
the corresponding Ada statements is that the directives may enclose
declarations and other praguas.

NT: To use the pragma IF, ELSEIF, ELSE, or END, the /XTRA
switch must be used.

PRAGMA INCLUDE

pragm- Include (file.path.namestring);

This source directive in the form of a language pragma permits
inclusion of another source file in place of the pragma. This
pragma may occur any place a language defined pragma, statement, or
declaration may occur. This directive is used to facilitate source
program portability and configurability. If a partial
file pachnamescring is provided, the current default pathname is
used as a template. A file name must be provided.

NOTE: To use the pragma INCLUDE, the /XTRA switch must be used.

PRAGMA INSTANTIATE

pragma Instantiate (option(, name});

This pragma is used to control instantiation of a particular
generic.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 19

To establish a default mode of instantiation for all generic
instantiations within the compilation, the following switch may be
entered on the TLDada command line and used instead of this pragma:

/instantiatemopeilo

In either the pragma or switch, option instructs the Compiler to
instantiate generics in the manner specified, as described below:

singlebody - a single body is used for all instantiations

macro - each instantiation produces a different body

In this pragma, name is the name of the generic to which this
pragua applies.

There are two basic forms for this pragma. The first form omits
the second parameter, is associated with a generic declaration, and
is permitted to occur only within a generic formal part (i.e.,
after "generic" but before "procedure*, "function", or "package'). I
In this form, the pragma establishes the default mode of
instantiation for that particular generic.

The second form uses the second parameter, is associated with the
instantiation, and may appear anywhere in a declarative part except
within a generic formal part. This form specifies what mode is to
be used for the instantiation of the named generic which follows in
the scope in which the pragma appears. This form of the pragms
takes precedence over the first form.

In the following example, assume the following definition:

generic
pragma instantiate(single body); -- pragma I
package G ...
end G;

generic
pragma instantiate(macro); -- pragma 2
package H ...
end H;

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 20

package A is new G(...);
package B in new G(...;)
package C is neow i(...);
package D is new H(...);

pragma instantiate (macro, G); - praga 3

package E is new G(...);
package F is new G(...);

In the above example, packages A and B share the same body, due to
pragma 1. Packages C, D, 9, and F will be treated as macro
instantiation C and D because macro instantia&tion is the default
for H (due to pragma 2) and for E and F because they follow pragma
3.

In both the pragma and switch:

"o Nested instantiations and nested generics are supported and
generics defined in library units are permitted.

"o It is not possible to perform a macro instantiation for a
generic whose body has not yet been compiled.

In this pragum:

o It is also not possible to perform a macro instantiation
from inside a single-bodied instantiation, because the
macro instantiation requires information at compile time
which is only available to a single-bodied generic at
execution time.

In the event of a conflict between the pragma and switch, the
switch takes precedence.

Please refer to Section 3.12 "Generics" for more information on the
advantages and disadvantages in using singlebody generics versus
macro generics.

PRAGMA INTERFACENAME

pragma InterfaceName (Ada-entity .name, string);

This pragma takes a variable or subprogram name and a string to be
used by the Linker to reference the variable or subprogram. It has
the same effect as the optional third parameter to pragma
Interface.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARGET COMPILER 5 - 21

PRAGMA bOOLBJECT

pragma 10Object (object-name I type.name{.

An 1O Object is an object which is fully contained within a page
(4096 bytes) and which begins and ends on a full word (4 byte)
boundary. 16 bytes of space preceding the 1OObject are reserved
by the Compiler for user-specified use. An object, is specified to
be an IO (_bject by use of the pragma IO Object.

If pragma OObject is applied to a type, then any object of that
type is an 1O_Object. If pragma IOObject is applied to an object,
then that object is an IOObject.

Only static objects may be IOObjects. If an attempt is made to
specify an object which is not static (e.g., an object declared
within a subprogram) as an IO Object, TLDada issues a warning and
the object is treated as a normal object.

The following is an example of Ada source in which pragma 1OObject
is applied to an object:

type BufferType is ...

pragma IO Object (BufferType);

Buffer Object : Buffer Type;

An IO Object can only be applied to scalar or composite types and
objects but cannot to component(s) of a composite type.

An 10 Attribute can be used to determine whether or not an object
is an IOObject and to return its value. Refer to section
Implementation-Dependent Attributes in this Chapter for more
information.

PRAGMA XNTERRUPT_KIND

pragma Interrupt_Kind (en cry..name, entry_•,ype{, duracion});

An interrupt entry is treated as an "ordinary" entry in the absence
of pragma InterruptKind. When pragma Interrupt Kind is used, an
interrupt entry may be treated as a "conditional" or "timed" entry.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 22

This pragm must appear in the task specification containing the
entry named and after the entry name is declared. Three
entry types are possible: ordinary, timed, and conditional. The
optional parameter duration is applicable only to timed entries and
is the maximum time to wait for an accept.

For an ordinary entry, if the accept in not ready, the task is
queued. For a conditional entry, if the accept is not ready, the
interrupt is ignored. For a timed entry, if the accept is not
ready, the program waits for the period of time specified by the
duration. If the accept is not ready in that period, the interrupt
is ignored.

PRAGMA LOAD

pragma Load (li teral-string);

This pragma makes the Compiler TLDada include a foreign object
(identified by the literal string) into the link command.

PRAGMA MEMORYUNIT

-pragma MemoryUnit (meomtypename, object name I typename, {...);

TLDacs will locate objects in memory units other than i960 standard
memory. Such objects are specified by use of pragma Memory Unit.
TLDada creates a control section for the specified memory unit and
allocates the specified objects or all objects of the specified
type to that control section. It passes the memory unit
information to TLDlnk in the object module. The user specifies the
location and size of the non-standard memory unit to link through a
MEWRY directive. The mem type name is the name of the memory unit
and is currently one of the following:

SPE
BNE
GLOK
LOT
SPMKIC
PBHKIC
SPMCASIU
PEMCASIU
FITS
HNVM
WWPROM
SUBBUS

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 23

and either object name (the specified object) or the typejnaue (all

objects of that type) may be specified.

For example:

pragme MemoryUnit (SPE, BufferType);

will collect all objects of Buffer_Type in a control section for
the memory unit name SPS.

The only legal reference to an object in a memory unit is a
'addraen reference.

PRAGMA MONITOR

prague Monitor;

The pragma Monitor can reduce tasking context overhead by
eliminating context switching. This prague identifies invocation
by the compiler. With pragua Monitor, a simple procedure call is
used to invoke task entry.

Generally, pragma Monitor restricts the syntax of an Ada task,
limiting the number of operations the task performs and leading to
faster execution.

The following restrictions pertain to Ada constructs in monitor
tasks:

"o Pragma Monitor must be in the task specification.

"o Monitor tasks must be declared in library level, nongeneric
packages.

"o A monitor task consists of an infinite loop containing one
select statement.

"o The "when condition" is not allowed in the select alternative of
the select statement.

"o The only selective wait alternative allowed in the select
statement is the accept alternative.

"o All executable statements of a monitor task must occur within an
accept body.

"o Only one accept body is allowed for each entry declared in the
task specification.

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 24

If & task body violates restrictions placed on monitor tasks, it is
identified as erroneous and the c=pilation fails.

PRAGMA NOOEFAULT3_NZTZALIZATION

pragma No DefaultInitialization;
pragma No.DefaultInitialization (eypename{....) ;

The LXM requires initialization of certain Ada structures even if
no explicit initialization is included in the code. For example,
the LRM requires access_type objects to have an initial value of
"NUML." Pragma NoDefaultInitialization prevents this default
initialization.

In addition, initialization declared in a type statement is
suppressed by this pragma.

TLD implementation of packed records or records with representation
clauses includes default initialization of filler bits, i.e., bits
within the allocated size of a variant that are not associated with
a record component for the variant. No Default Initialization
prevents this default initialization.

This pragma must be placed in the declarative region of the
package, before any declarations that require elaboration code.
The pragma remains in effect until the end of the coilation unit.

NOTE: To use the pragma, NODEFAULT INITIALIZATION, the /XTRA
switch must be used. The use of this pragma may affect the
results of record comparisons •.nd assignments.

PRAGMA NO_ELABORATION

pragma no-elaboration;

Pragma No-Elaboration is used to prevent the generation of
elaboration code for the containing scope. This pragma must be
placed in the declarative region of the affected scope before any
declaration that would otherwise produce elaboration code.

This pragma prevents the unnecessary initialization of packages
that are initialized by other non-Ada operations. Pragum
No Elaboration is used to maintain the Ada Run Time Library
(TLDrtl)

ii

TLD ADA COMPILER :960-ADA-2C
x960 TARGET COMPILER 5 - 25

For example:

package Test is
Pragma No.Zlaboration;
for Program Status Word use

record at mod 8;
System Mask at O0*WORD range 0.-.7;
Protectic Key at OWORD range 10 .. 11; -- bits 8,9 unused

end record;
end Test;

In the above example, the No Elaboration pragma, prevents the
generation of elaboration code for package Test since it contains
unused bits.

NOTE: To use the pragma0 NOELABORATION, the /XTRA switch us-t
be used. The use of this pragma may affect the results of record
comparisons and assignments.

PRAGMA NOZERO

pragma NoZero (record cypname);

If the named record type has "holes" between fields that are
normally initialized with zeroes, this pragma will suppress the
clearing of the holes. If the named record type has no "holes8,
this pragma has no effect. When zeroing is disabled, comparisons
(equality and non-equality) of the named type are disallowed. The
use of this pragma can significantly reduce initialization time for
record objects.

PRAGMA PUT

pragma Put (value{,);

Pragma Put takes any number of arguments and writes their value to
standard output at compile time when encountered by the Compiler.
The arguments may be expressions of any string, enumeration,
integer type, or scalar expression (such as integer'size) whose
value is known at compile time. This pragma prints the values on
the output device without an ending carriage return; pragma
Put Line is identical to this pragma, but adds a carriage return
after printing all of its arguments.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 26

This pragma is useful in conditionally-compiled code to alert the
programmer to problems that might not otherwise come to his
attention via an exception or a c=Wile- time error.

This pragma may appear anywhere a pragma is allowed.

PRAGMA PUTLINE

pragma PutLine (value{, ...));

Pragma Put-Line takes any number of arguments and writes their
value to standard output at compile time when encountered by the
Compiler. The arguments may be expressions of any string,
enumeration, integer type, or scalar expression (such as
integer'size) whose value is knowm at compile time. This pragma
prints the values on the output device and adds a carriage retu:-n
after printing all of its arguments; pragma Put is identical to
this pragma, but prints the values without an ending carriage
return.

This pragma is useful in conditionally-compiled code to alert the
programmer to problems that might not otherwise come to his
attention via an exception or a cwzpile-time error.

This pragma may appear anywhere a pragma is allowed.

PRAGMA REGISTER

pragma Register (object name, register number);

This pragma allows limited register dedication to an object for the
purpose of loading registers with complex Ada expressions or
storing registers into cmplex operands within machine code
insertion subprograms. The Compiler dedicates the specified
register to the specified object until the end of the scope is
reached or until it is released through a call to the subroutine,
Unprotect, in the Machine Code package. The object name is the
name of the object to be dedicated to the register and
register number is the register number (without the "R, prefix that
is valid for the particular target).

These objects may be used on the left or right side of an
assignment statement to load or store the register, respectively.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 27

PRAGNA TC8 EXTENSION

pragma TCBxtensio (value);

This pragma is used to extend the size of the Task Control Block on
the stack. It can be used only vithin a task specification. The
parameter passed to this program must be static and represents the
size to be extended in bytes.

PRAGNA UNALIGNED

pragma Unaligned(name ...);

This pragma is used to accImmodate an access object that contain,
or might contain, an address which is not four byte aligned. The
name parameter identifies an access type or object that contains
unaligned address values. The name parameter may also refer to a
formal parameter passed by address that might be occasionally
passed an unaligned actual parameter.

PRAGMA WZTHXNPAGE

pragma Wthin-Page (cypename);
pragma Within-Page (objectnlame);

IfT=: The cypename or objec-name must have been previously
declared in the current declaration region and these declarations
must be in a static data context (i.e., in a package
specification or body that is not nested within any procedure or
function).

This pragma instructs the compiler to allocate the specified
object, or each object of the specified type, as a contiguous block
of memory words that does not span any page boundaries (a page is
4096 bytes).

The compiler generates a warning message if the allocation is
noncontiguous or not yet determined (see the description of pragma
Contiguous, above). Additionally, the compiler generates a warning
message if the pragma is in a nonstatic declarative region. If an
object exceeds 4096 bytes, it is allocated with an address at the
beginning of a page, but it spans one or more succeeding page
boundaries and a warning message is produced.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 28

PRAGMA VOLATILE

pragma Volat.le (vwriaJibeaimp1eama);

This pragma performs the same function as Pragma Shared, however,
it also applies to coqmosite types an well an scalar types or
access types.

IMPLEMENTATION-DEPENDENT ATTRiBUTES

ADDRESSTYPE

The attribute 'Address-Type is used in a length representation
clause to indicate that the address type is to have the
characteristics of an access descriptor (with a tagged bit).

The format is:

for cype-name'Address_Type use Access-Descriptor

TASKID

The attribute 'TaskTID is used only with task objects. This
"TLD-defined attribute returns the actual system address of the task
object.

ZO..ATTRZBUTE

The attribute '10 Attribute is used to determine whether or not an
object is an 10Object.

When 10_Attribute is applied to an object, it returns a value of
type Object Attribute_Type, which is a private type declared in the
package System.

If the object ia an I0_Object, then the value returned is the
address of a record containing the address of the object and the
number of bits in the object including any bits necessary for
padding (and does not include the preceding 16 bytes of reserves
user space).

If the object is M& an ISOObject, then the value returned is
Invalid Object Attribute, which is also defined in the package
System.

ii

TLD ADA COMPILER z960-ADA-2C
x960 TARGET COMPILER 5 - 29

The association of an 10 Attribute with its IOSObject is maintained

only at compile time. For example, if an 10Object is passed as a
parameter to a subprogram, then within the subprogram, the

10Attribute for that 10_Object has the value
Invalid OObjectAttribute.

The following is an example of obtaining the value returned by
'IQAttribute for the 1O0Object Buffer.Object sham in the example
above (under the Pragma 1OObject subsection heading).

A procedure which reads information into an 10 Object is defined as
t.ollows:

procedure Get (...; BuffAttr : System.ObjectAttribute_Type; ...);

The procedure is called &a follows:

Get (.... BufferObject' 1OAttribute, ... ;

In the above example, the address of a record containing the
address of the object and the number of bits in the object are
returned for Buffer Object.

PACKAGE SYSTEM

The specification for this package is included in the System .Ada
file.

REPRESENTATION CLAUSES

Record representation clauses are supported to arrange record
components within a record. Record components may not be specified
to cross a word boundary unless they are arranged to encompass two
or more whole words. A record component of type record that has
record representation clause applied to it may be allocated only at
bit 0. Bits are numbered from right to left with bit 31 indicating
the sign bit.

When there are holes (unused bits in a record specification), the
compiler initializes the entire record to permit optimum assignment
and compares of the record structure. A one-time initialization of
these holes is beneficial because it allows block compares and/or
assignments to be used throughout the program. If this
"optimization" is not performed, record assignments and compares
would have to be performed one component at a time, degrading the
code.

To avoid this initialization, the user should check to be certain

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 30

that no holes are left in the record structure. This may be done
by increasing the size of the objects adjacent to the hole or by
defining dummy record coponents that fill the holes. If the
latter method is used, any aggregates for the structure must
contain values for the holes as well as the "real" compnents.
lven with the extra coqmonents, this approach should optimize space
and speed in cmparison to processing me component at a time.

If the compenontclause of a record representation specification is
not in the same order as the cmponent_list of the record
specification, the entire record is initialized, as indicated
above.

Address clauses are supported for variable objects and designate
the virtual address of the object. The Compiler System uses
address specification to access objects allocated by non-Ada means
and does not handle the clause as a request to allocate the object
at the indicated address. Address clauses to specify the address
to which code should be relocated, are not supported for
subprograms, packages, or tasks.

NOTE: Length clauses are supported for 'Size applied to objects
other than task and access type objects and denote the number of
bits allocated to the object.

Length clauses are supported for 'StorageSize when applied to a
task type and denote the number of words of stack to be allocated
to the task.

Length clauses are supported for 'Storage-Size applied to an
access type and indicates the number of storage units to be
reserved for the collection.

Enumeration representation clauses are supported for value ranges
of Integer'First to Integer'Last.

An alignment representation clause has been added that
corresponds to Ada 9X that requests a subtype or object to be
allocated to an address that is a multiple of the alignment
value. Its syntax is

for object orsubcype'Alignment use expression;

The alignment expression must be a static value. The use of
multiple alignment clauses within the same control section will
result in the containing control section assuming an alignment
value which is the greatest common multiple (GCH) of the
alignment factors occurring within the control section.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 31

CONVENTIONS FOR IMPLEMENTATION-GENERATED

NAMES DENOTING IMPLEMENTATION-DEPENDENT

COMPONENTS

The Compiler System defines no implementation dependent names for
compiler generated record components.

Two naming conventions are used by TLDacu. All visible run time
library subprograms and kernel services begin with the character
A a. Global Run Time System data names begin with the characters

"AS". The unique name created by the compiler for overload
resolution is composed of the user name appended with * $a, plus a
maximum of three characters derived from the compilation unit name,
followed by three digits representing the ordinal of the visible
name within the compilation unit. The maximum length of this r"me
is 128 characters.

INTERPRETATION FOR EXPRESSIONS APPEARING

IN ADDRESS CLAUSES

Address expression values and objects of type Address represent: a
location in the program's linear address space.

RESTRICTIONS ON UNCHECKED CONVERSIONS

Unchecked conversion of generic formal private types is not allowed.

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

OF INPUT-OUTPUT PACKAGES

PACKAGE DIRECT_1O (LRm 14.2.S)

PACKAGE IOEXCEPTIONS (LRm 14.5)

PACKAGE SEQUENTIALIO (LRK 14.2.3)

Input-Output packages are described in the Reference Document for
the TLQ Ada i960 Run Time System.

ii

TLD ADA COMPILER z960-ADA-2C
z960 TARGET COMPILER 5 - 32

PACKAGE TEXT_ZO (L., 14.3.10)

The following implementation-defined types are declared in Text Io:

type Count is integer range 0 .. 511;
subtype Field is Integer range 0 .. 127;

6 .z960 TARGET COMPILER CHARACTERISTICS

The characteristics of the target compiler are described in this
section.

6.1 z960 RUN TIME CONVENTIONS

The Run Time conventions established for the TLD Ada Compiler and Run
Time System are explained in the Reference Document for the TLD Run
Time System. i960 Taraet. This information is necessary when the
user's application software is coded in a language other than Ada.

6.2 EXTERNAL NAMES

External names are supported to a maximum length of 128 characters or
the limits imposed by the i960 Linker. The system dependent character,
" ", is left as a " " in external names since it is a legal character
for the Linker.

7 RELOCATABLE OBJECT FILES

TLDada produces Relocatable Object Files containing the results of the
compilation.

The TLDada Compiler partitions the generated object module into several
separately relocatable control sections. By default, instructions are
allocated in control section, SISECTS. Literals are allocated in a
read-only operand control section, $CONS$. Statically allocated data
are allocated in control section $DATAS. The NOCSEG switch may be used
to combine literals and data into the same control section.

The TLD Relocatable Object File is described in the Reference Document
for the TLD 32-Sit Universal Linker. i960 Target.

ii

TLD ADA COMPILER x960-ADA-2C
z960 TARGET CMPILER S - 33

The control section names and attributes are:

Relocatable Control Sections

same: $ISICTS $SCOS3$ $DATA$ U PPKD
Instructions Constants Data Onmapped

Attribute s:

IMDIRECT DIRZCT DIRECT DIRECT DIRECT
MAPPED MRPPED MhPPED VhPPED` UNM PPED

RAKRN RAKORý_C. RAM.ORyROK RAN RAM
SO/ROZ4 MAN MEORY laX! MEMRY aaI3j_3WRY laIN)Mmy
SHMNOT PWTT NOT TY NOT E•NTY NOT !YM
DNR U TE.CTD UNPROTECTED UNPR.O•TEED UNROTECTZD
].RAN UNPR.OTCTED U1PROTECTED -,PROTECTD UNPROTECTED
PRIG UNPROTECTED UNPROCTED UNPROTECTED UNPROTECTED
RONDNSP RONECH UNSP RO,M CH UNSP UNPROTECTED UNPROTECTED
0/I INSTRUCT MEN OPERAND MEm OPERAND MRM OPERAND
PRLL NODULE ALLOC NODULE ALLOC MODULE ALLOC MODULE ALLOC

These attributes are also described in the Reference Document for the
TLD 32-Bit Universal Linker. i960 Target. Sections 3 and 4.2 describe
TLDink's use of attributes, Appendix A describes the TLD Relocatable
Object File attributes and associated values.

8 TARGET REFERENCE TABLE

The following table provides i960 parameter values.

ii

°..°. ...e.°- ° -.. °°°..

Purpose:
-4 To satisfy the Ada LIM re@Wiriiint for package SYSTEM

-- type address is range O..16#FFFF FFFF#;
type address Is range -2_147_483 M8..2_147_483M647;
for address'size use 32;

-- an 1960 33-bit access descriptor---we ignore the 33rd bit here
type accessdescriptor is range -2 147 483 648..2 147 483 M7;
for access descriptor'size use 32;

type unsigned is range 0..2 147 483 647;
for unsigned'size use 31;

type short_ nteger is range -32768..32767;
for shortinteger'size use 16;

type tong integer is range -2 147 483M 648..2 147 483 67;
for tonginteger'size use 32;

-- Note: The order of the elements in the OPERATING SYSTEMS and NAME
-- emerations CANNOT be changed--they mist corresm d with the values
-I In the CONFIG.CFG file.

type OperatingSystems is CUnix, Metos, Was, Ucsd, Msdos, Bear, TruW, ATX);

type Noew is (Puachine, NsI6000, Vax, Af01750, Z8002, 28001,
Gould, Pdp11, M8000, Pe32L0, Caps, Amdahl,
16086, 180286, 180386, ZB0W1, Ns32000, Ibasl,
M68020, Nebula, NIX, Hp, Llbl, Hawk, R1666, 1960);

type Object AttributeType is private;
Invalid.Object.Attribute : constant ObjectAttributeType;

system nme: constant name :a 1960;

os name: constant operatingSystems :a RTX;

subtype priirity is integer range 1..20; -- I is default priority.

note: the following priority is probably not valid for the Hawk
and will have to be modified whaen tasking is implemented

subtype interrupt priority is integer range 1..15;

prapea puttfne(C>', 1>1. 1>1, 1 4, system name,
1 I 4/0, 6 * Osnme I , 6(6, 6, 1<6);

-- Language Defined Constants
storage unit: constant := 8;
memorysi ze: constant := 16•4000_00008; -- 256H words per segment
min.int: constant :a -2'31;
max int: constant := 2**31-1;
umxdigits: constant :z 15;
max mantissa: constant :a 31;
fin; delta: constant :a 2.0"*(-31);
ticks per~second : constant := 1000_000.0; -- Clock ticks are 1 usecs.
tick : constant :a 1.D/ticks persecond;
ticks perrtc : constant :8 1601000000#;

-- system specific constants
address 0: constant address :- 0; -- Zero address
yult- iddress: constant address :- 0; :- NuLl ptr as system.address
nuttAD : constant access-descriptor :- 0; -- nutt AD, untagged

private
type Object AttributeType is record

ObjectAddress : Address :a nultladdress;
Object.Size : Integer :a integer'first;

end record;
invalid Object-Attribute : Constant ObjectAttribute Type :8

(Object.Address =>nutL address,
ObjectSize Inteaer'first);

end system;

--- * The following software is the property of TLO System, Ltd. U

.-- Copyright (C) TLD System, Ltd., 1992

When this software is delivered to the U.S. Government, U

the foLlowing applies:

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
--- restrictions as set forth in subpargraph (c)(1)(ii) of the Rights in

--- , Technical Data and Computer Software clause at 52.227-7013. U

--- U TLD Systems, Ltd., Torrance, California

.s ..az ..zgs . .a.sa uuZUU.SS. Us. zz. . azZ..

-- Source file name:
- - SYSTEM.ADA

-- Packages defined:
- - system - system constained constants and types

-- Revision history:
-- 07-21-88 gtw new code for Hawk-32:
- - add types: shortinteger, tonginteger
-- add osvs' to operatingsystem type
-- add 'hawk' to name type

change priority range to 1..200
-- change address range to O..16#FFFFFFFF#
-- change address'size to 32 bits
-- change mmorysize to 16#100000000

package system is

-- SRS Requirements:
-- #extract requirements
- -#None.
-- #end

-- 4--4

-- Package name:
- - system - system constrained constants and types

-- Initialization entry:

-- Types/subtypes defined:
- - address
-- unsigned
- - short_integer
- - long-integer
- - operat i ngsystem

-- priority
- interrupt_priority
-- Object AttrfbuteTYPe

-- Constants defined:
- - system nee
- - O rosne
-- storageunlt
-- memoryssize
-- rmin Int
-. max int

m-x-digits
- maxiant issa
-- fine delta
-- ticksjper second
-- tick
-- ticksjerjrtc
- - address 0

null adidress
null AD

-- InvilidfObjectAttribute

-- ----------------------------------- -------------------------------------

